
www.manaraa.com

Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

July 2013

Maps of Lessons Learnt in Requirements
Engineering
Ibtehal Noorwali
The University of Western Ontario

Supervisor
Nazim H. Madhavji
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Ibtehal Noorwali 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Software Engineering Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Noorwali, Ibtehal, "Maps of Lessons Learnt in Requirements Engineering" (2013). Electronic Thesis and Dissertation Repository. 1352.
https://ir.lib.uwo.ca/etd/1352

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F1352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1352?utm_source=ir.lib.uwo.ca%2Fetd%2F1352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

www.manaraa.com

MAPS OF LESSONS LEARNT IN REQUIREMENTS ENGINEERING

(Thesis format: Monograph)

by

Ibtehal Noorwali

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Ibtehal A. Noorwali 2013

www.manaraa.com

Abstract

Both researchers and practitioners have emphasized the importance of learning from past ex-

periences and its consequential impact on project time, cost, and quality. However, from the

survey we conducted of requirements engineering (RE) practitioners, over 70% of the respon-

dents stated that they seldom use RE lessons in the RE process, though 85% of these would use

such lessons if readily available. Our observation, however, is that RE lessons are scattered,

mainly implicitly, in the literature and practice, which obviously, does not help the situation.

We, therefore, present “maps” of RE lessons which would highlight weak (dark) and strong

(bright) areas of RE (and hence RE theories). Such maps would thus be: (a) a driver for re-

search to “light up” the darker areas of RE and (b) a guide for practice to benefit from the

brighter areas. To achieve this goal, we populated the maps with over 200 RE lessons elicited

from literature and practice using a systematic literature review and survey. The results show

that approximately 80% of the elicited lessons are implicit and that approximately 70% of

the lessons deal with the elicitation, analysis, and specification RE phases only. The RE Les-

son Maps, elicited lessons, and the results from populating the maps provide novel scientific

groundings for lessons learnt in RE as this topic has not yet been systematically studied in the

field.

Keywords: lessons learnt in requirements engineering, lesson maps, software engineering,

software quality, empirical study.

ii

www.manaraa.com

Acknowledgements

First and foremost, my sincere thanks go to Professor Nazim Madhavji for his continuous guid-

ance, supervision, and encouragement during the course of my research.

I would also like to thank my friends and colleagues: Avi Walia, Quanjun Yin, and Rashed

Nekvi for their support, helpful comments and invaluable input throughout my studies.

I would like to thank the Department of Computer Science at the University of Western Ontario

for the computing infrastructure and facilities provided during my graduate studies.

Special thanks to Saudi Arabia’s Ministry of Higher Education, The Saudi Arabian Cultural

Bureau, and Umm Al-Qura University for fully funding my graduate studies.

Last but not least, I would like to thank my mother, father, siblings, and close friends for

their never-ending support, love and encouragement, which without, I would not have been

able to complete this work.

iii

www.manaraa.com

Publications

Reference: Noorwali, I. and Madhavji, N. H. (2013a). Lessons learnt in requirements engi-

neering: A research preview. In Doerr, J. and Opdahl, A., editors, Proceedings of the 19th Inter-

national Working Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ 13), LNCS 7830, pages 119124, Essen, Germany. Springer-Verlag Berlin Heidelberg.

Abstract: “Those who cannot remember the past are condemned to repeat it” – George San-

tayana. From the survey we conducted of requirements engineering (RE) practitioners, over

70% seldom use RE lessons in the RE process, though 85% of these would use such lessons if

readily available. Our observation, however, is that, RE lessons are scattered, mainly implic-

itly, in the literature and practice, which, obviously, does not help the situation. Approximately

90% of the survey participants stated that not utilising RE lessons has significant negative im-

pact on product quality, productivity, project delays and cost overruns. We propose “maps (or

profiles) of RE lessons which, once populated, would highlight weak (dark) and strong (bright)

areas of RE (and hence RE theories). Such maps would thus be: (a) a driver for research to

light up the darker areas of RE and (b) a guide for practice to benefit from the brighter areas.

The key contribution of this work is the concept of “maps” of RE lessons.

This REFSQ 2013 paper is jointly authored by Noorwali and Madhavji and the contribution

by both authors is significant. For the full paper, please see Appendix E.

iv

www.manaraa.com

Table of Contents

Abstract ii

Acknowledgements iii

Publications iv

List of Figures ix

List of Tables x

List of Appendices xii

Glossary: List of Terms xiii

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Purpose of the Study . 2

1.3 Significance and Originality of Research . 3

1.4 Thesis Structure . 3

Chapter 2: Related Work 5

2.1 Lessons Learnt in Non-Software Engineering Fields 5

2.2 Lessons Learnt in Software Engineering . 9

2.3 Lessons Learnt in Requirements Engineering 12

2.4 Analysis and Research Gap . 14

v

www.manaraa.com

Chapter 3: The Concept of a Lesson and Lesson Map 15

3.1 Lesson Concept . 15

3.1.1 Lesson Definition . 15

Literature Definitions . 15

Dictionary Definitions . 16

3.1.2 Lesson Representation . 18

Generic Attributes . 18

Extended Attributes . 21

3.2 Lesson Map Concept . 22

3.2.1 Map Definition . 22

3.2.2 The Concept of a Lesson Map . 22

Chapter 4: The Concept of Lessons and Lesson Maps in RE 24

4.1 RE Lesson . 24

4.2 RE Lesson Map . 37

4.3 Validation Processes of the RE Lesson and Lesson Map 38

Chapter 5: The Empirical Study on RE Lessons 42

5.1 Research Goal and Questions . 42

5.2 Research Methods . 44

5.2.1 Systematic Literature Review . 44

Research Questions . 45

Review Protocol . 46

Review Protocol Validation . 49

5.2.2 Survey . 50

Instrument Design . 51

Data Collection . 52

Data Analysis . 52

vi

www.manaraa.com

Participants . 52

5.3 Threats to Validity . 54

5.3.1 Systematic Literature Review . 54

Internal Validity . 54

External Validity . 54

Construct Validity . 55

Conclusion Validity . 55

5.3.2 Survey . 55

Internal Validity . 56

External Validity . 56

Construct Validity . 57

Conclusion Validity . 57

Chapter 6: Results of the Empirical Study: Elicited Lessons 59

6.1 RE Lessons from Literature . 59

6.1.1 Lessons from Year 2011 . 61

6.1.2 Lessons from Year 2012 . 65

6.2 RE Lessons from Practice . 69

6.3 Summary and Discussion . 77

Chapter 7: Populated RE Lesson Maps 90

7.1 Map 1: RE Phase . 91

7.2 Map 2: RE Phase X Expression . 91

7.3 Map 3: Type X Source . 91

7.4 Map 4: Target Object X RE Phase . 92

7.5 Map 5: Type X Expression X RE Phase . 93

Chapter 8: Implications 99

8.1 Implications on Research . 99

vii

www.manaraa.com

8.2 Implications on Practice . 100

Chapter 9: Limitations, Future Work and Conclusions 101

9.1 Limitations and Future Work . 101

9.2 Conclusions . 102

Appendix A: A Survey of Lessons Learnt 106

Appendix B: Lessons Learnt in Requirements Engineering: A Survey 114

Appendix C: Results of the Empirical Study: Elicited Lessons 119

Appendix D: Lesson Object and Tool Support 374

Appendix E: Published REFSQ Paper 375

Bibliography 382

Curriculum Vitae 409

viii

www.manaraa.com

List of Figures

4.1 A Lesson Map with ‘Type’ attribute . 38

4.2 A Lesson Map with ‘Phase’ and ‘Software Process’ attributes 39

4.3 A Lesson Map with ‘Target Object’ and ‘Phase’ and ‘Expression’ attributes . . 40

5.1 Systematic Literature Review Process . 45

7.1 ‘RE Phase’ Lesson Map . 94

7.2 ‘RE Phase X Expression’ Lesson Map . 95

7.3 ‘Type X Source’ Lesson Map . 96

7.4 ‘Target Object X RE Phase’ Lesson Map . 97

7.5 ‘Type X Expression X RE Phase’ Lesson Map 98

ix

www.manaraa.com

List of Tables

1.1 Percentage of respondents who indicated that accessing lessons learnt is ‘easy’

and ‘very easy’ from various sources . 2

3.1 An example map with context attributes X and Y. 23

5.1 Percentage of respondents who indicated that accessing lessons learnt is ‘easy’

and ‘very easy’ from various sources . 43

5.2 Selected journals, conference and workshop proceedings. 47

5.3 Percentage distribution of the key roles played during the career of the partici-

pants. 53

5.4 Percentage distribution of years of work experience of the participants. 53

6.1 Sources searched for years 2011 and 2012 . 60

6.2 Numbers for the attribute ‘Expression’ for the lessons of years 2011 and 2012 . 78

6.3 Numbers for the attribute ‘RE Phase’ for the lesson of years 2011 and 2012 . . 79

6.4 Numbers for the attribute ‘Target Object’ for the lessons of years 2011 and 2012 79

6.5 Numbers for the attribute ‘RE Practice’ for years 2011 and 2012 80

6.6 Numbers for the attribute ‘Application Domain’ for the lessons of years 2011

and 2012 . 81

6.7 Numbers for the attribute ‘Software Process’ for the lessons of years 2011 and

2012 . 81

6.8 Numbers for the attribute ‘source’ for the lessons of years 2011 and 2012 . . . 82

6.9 Numbers for the attribute ‘Type’ for the lessons of years 2011 and 2012 83

x

www.manaraa.com

6.11 An example of a low quality lesson from literature 84

6.12 An example of a high quality lesson from literature 86

6.13 An example of a low quality lesson from practice 89

xi

www.manaraa.com

List of Appendices

Appendix A: A Survey of Lessons Learnt . 106

Appendix B: Lessons Learnt in Requirements Engineering: A Survey 114

Appendix C: Results of the Empirical Study: Elicited Lessons 119

Appendix D: Lesson Object and Tool Support . 374

Appendix E: Published REFSQ 2013 Paper . 375

xii

www.manaraa.com

xiii

www.manaraa.com

Chapter 1: Introduction

1.1 Motivation

The importance of lessons learnt (LL) has been stressed upon in the software engineering lit-

erature [Abdelhamid and Madnick, 1990, Basili et al., 2002, Boehm, 2006] as well as in the

software industry [Kaner et al., 2001]. The benefits of lessons learnt for improving processes,

products, and services have been widely cited, e.g.: “we provide a set of lessons learned that

should help future groups to learn from and improve on a quarter of century of experiences”

[Basili et al., 2002] and “past knowledge is birthed from lessons learned that should be made

available and accessible to different parties for different occasions” [Lee, 2008].

With requirements engineering (RE) as an established field, one can assume that lessons are

being learnt in this field as well. However, our analysis of the requirements engineering lit-

erature indicates that lessons learnt are rarely explicitly described and often they are lacking

contextual information. This analysis also indicates that many RE lessons are scattered and

implicitly described in the literature and so this makes it arduous to apply readily in software

projects.

Our main concern is about the possible negative impact of the state of LL in the field of RE.

The concerns are twofold: a. Is it that the scientific and practicing RE communities are not

widely and effectively using LL from the collective past experiences? b. There is not much

scientific basis and technological support for LL.

To validate this concern, especially about RE LL in industry, we conducted a survey of 50

RE practitioners from the US, Canada [Noorwali and Madhavji, 2012] (see Appendix A), Eu-

rope and Asia. The findings are alarming. Around 82% of the respondents indicated that RE

LL are important for their organisations’ RE processes. However, 72% stated that RE LL are

1

www.manaraa.com

Chapter 1. Introduction 2

only occasionally/hardly ever used in their organisations. Moreover, 90% indicated that RE LL

are shared within the organisation through informal sharing. The statistics for the difficulty of

finding, gathering, eliciting and getting access to RE LL from various sources were as follows:

Table 1.1: Percentage of respondents who indicated that accessing lessons learnt is ‘easy’ and
‘very easy’ from various sources

Source Easy Very Easy
Development projects 24% 7%

People 21% 23%
Websites 18% 3%

Books 32% 0%
Technical reports 16% 0%

Around 85% of the respondents indicated that they will use RE LL in their projects if they were

made readily available. Finally, the percentage of the respondents who said that the level of

impact is significant for the different attributes is significant, is as follows: Productivity loss:

85%, project delays: 90%, cost overruns: 93%, product quality problems: 95%, repeating

mistakes: 98%, opportunities lost: 60%, project failures: 62%, Customer dissatisfaction: 83%.

1.2 Purpose of the Study

The findings from section 1.1 present the following two questions that this study seeks to

answer:

• What is the state of LL in RE?

• What scientific and technological basis can be created to promote the use of LL in RE?

Therefore, the purpose of this study is:

To understand and determine the state of lessons learnt in RE and promote their use by creating

a scientific basis for the structuring and organization of lessons embodied in the concept of

“Lesson Maps” and populating them with lessons elicited from the literature and practice. We,

therefore, conduct a solution-building and knowledge-seeking study in an attempt to achieve

this purpose. The solution building study involves presenting a formal representation of a

www.manaraa.com

Chapter 1. Introduction 3

RE lesson and concept of RE Lesson Map. The knowledge-seeking empirical study includes

a systematic literature review of two years of RE literature and a survey to gather lessons

from practice. We chose two years of RE literature across several conferences and journals

that amount to approximately 740 papers. This results in significant amount of arduous work

analysing these papers to elicit lessons learnt. For the purpose of this thesis, the analysis of two

years of literature is considered adequate proof-of-concept study.

1.3 Significance and Originality of Research

The populated lesson maps are anticipated to:

• Improve current RE processes by utilising the lesson maps in projects. This in turn, is

anticipated to have an effect on project costs, time, and quality.

• Generate new RE theories by exposing weaker (darker) and stronger (brighter) areas of

RE.

• Promulgate further research across the different RE areas to brighten up the ’darker’

areas.

While much work has been done in the area of lessons learnt outside and within the software

engineering field, no scientific work has been done on LL in RE. To our knowledge, the concept

of a RE Lesson Map is a novel one and an attempt to provide a significant body of knowledge

of RE lessons has not yet been made.

1.4 Thesis Structure

The thesis is structured as follows: Chapter 2 discusses the related works from the research

literature; Chapter 3 presents the general concept of a lesson and lesson map including the

definitions, representation and attributes; Chapter 4 is where we apply the concepts of a lesson

and lesson map to RE specifically; Chapter 5 describes the empirical study we conducted to

elicit lessons from the literature and practice detailing the research questions, research methods

www.manaraa.com

Chapter 1. Introduction 4

and threats to validity; Chapter 6 includes the results of the empirical study (i.e. the elicited

lessons from literature and practice); Chapter 7 gives examples of some populated RE Lesson

Maps; Chapter 8 discusses the implications of this study on research and practice; Chapter 9

summarizes the thesis by discussing the limitations of the study and future work in this area.

www.manaraa.com

Chapter 2: Related Work

The concept of lessons learnt has received significant attention in many fields such as man-

agement [Lee, 2008], education [Bodycott and Walker, 2001], medicine [Rogers et al., 2001],

policymaking [McLaughlin, 1987], and biotechnology [Olson and Lyles, 2011], to name a few.

Both researchers and practitioners have dealt with lessons learnt in their respective fields in

different ways. Their focus was mainly on the following two dimensions: (i) collecting and

sharing the lessons they learnt through mediums such as publications and technical reports [Ol-

son and Lyles, 2011, Bodycott and Walker, 2001, Rogers et al., 2001], and (ii) studying and

proposing methods, processes and solutions for dealing with and managing lessons learnt in

projects, teams, and organizations. Based on our extensive literature search, we categorised

the study of LL into three disciplines: the study of lessons learnt in non-software engineering

fields, software engineering in general, and finally lessons learnt in requirements engineer-

ing, discussed in sections 2.1, 2.2, and 2.3 respectively. Section 2.4 presents the analysis and

research gap.

2.1 Lessons Learnt in Non-Software Engineering Fields

Our literature analysis led us to the realisation that LL have received more attention in non-SE

fields and in SE in general than in RE specifically. Within the dimension of managing LL,

Huber [Huber, 1991] analyses the relative literature on organisational learning and assesses

the current state of research on each of the following four organisational learning constructs:

(1) knowledge acquisition, (2) information distribution, (3) information interpretation, and (4)

organisational memory. Knowledge acquisition refers to the formal methods used to acquire

information or knowledge such as customer surveys, research and development activities, per-

formance reviews, and analyses of competitor’s products. He categorises the processes through

which organisations acquire information into five processes: (1) congenital learning, (2) experi-

ential learning, (3) vicarious learning, (4) grafting, and (5) searching. Information distribution

5

www.manaraa.com

Chapter 2. RelatedWork 6

determines both the occurrence and breadth of organizational learning. Information interpreta-

tion is defined as “the process through which information is given meaning” and “the process of

translating events and developing shared understandings and conceptual schemes”. Finally, or-

ganisational memory refers to the methods through which information is stored and retrieved.

He concludes that, while much work has been done in the area of information distribution,

there is a dearth of research in the areas of knowledge acquisition, information interpretation

and organizational memory.

On a similar note, Wellman [Wellman, 2007] describes the advantages and disadvantages of the

four methods that organisations use to manage lessons learned: Culture, Old Pros, Archives,

and Processes. Culture is the set of behaviours and operating principles that nearly everyone

knows but which are not written. Old Pros refer to those people in an organisation who have

been around long enough for them to gather a great deal of experience. Archives are used to

capture and retrieve lessons and Formal Processes can be used as both a repository and dissem-

inator of lessons learned. In summary, the best approach is to use the four methods effectively

while recognizing the complexity and challenge of doing so.

Lee [Lee, 2008] discusses some of the essential functions that lessons learnt provide project

managers: navigation tool; preventive measures; decision making tool; reserves allocation;

portfolio and program management; heuristic methods for solving a problem. He also dis-

cusses the reasons behind ineffective lessons learnt and provides guidelines to make lessons

learnt more effective for project managers:

• Make sure lessons learnt are done in each phase as deliverables.

• Ensure the lessons learnt pre-format form has all the right prompts to request right details.

• Avoid brainstorming. Organise and solicit input using a structure and chronological

approach. This is to enable individuals’ thought processes to be in line with the chrono-

www.manaraa.com

Chapter 2. RelatedWork 7

logical events of the project and to think in an orderly fashion that is connected from the

beginning through closing.

• Pre-determine which areas of the project are to be assessed and use quantification meth-

ods to determine the level of success or failure. Use empirical evidence if necessary.

• Ensure a lessons learnt session is included as one of its agenda during the kick off meeting

and emphasises its importance.

• Ensure there is a checklist put in place to ensure each milestone, major deliverable or

phase be accompanied by lessons learnt sessions.

• Find ways to bring the team together. Make lessons learnt a compulsory task to be

completed before the project team and stakeholders are disbanded from the project. This

can be done offsite in conjunction with success celebration.

• Make lessons learnt include key stakeholders and various representatives to ensure the

views are comprehensive, balanced, accurate and verified. Enforce attendance list is

taken to ensure all participate.

• Use a filter list to check if the information shared is relevant for other similar projects,

can be used for project improvement, has generic lessons that can be applied across

different industries and has positive impact for the future. Do not waste time on trivial

information.

• Avoid referring to specific individuals and NEVER disclose their names. Remember an

individual or a group mistake may not be perceived as their mistake. It could come from

a chain of reaction.

• A project success is the result of team effort. Culminate the project closure by giving

credit and commendation to groups or departments rather than specific individuals.

• Archive lessons learnt documents in an accessible repository.

www.manaraa.com

Chapter 2. RelatedWork 8

Patton [Patton, 2001] argues that in order for a lesson to be of high quality, it must be represen-

tative of principles extracted from various sources and applicable to future actions. He presents

a set of questions for generating high-quality lessons learnt:

• What is meant by a “lesson?”

• What is meant by “learnt?”

• By whom was the lesson learnt?

• What is the evidence supporting each lesson?

• What is the evidence the lesson was learnt?

• What are the contextual boundaries around the lesson (that is, under what conditions

does it apply)?

• Is the lesson specific, substantive, and meaningful enough to guide practice in some

concrete way?

• Who else is likely to care about this lesson?

• What evidence will they want to see?

• How does this lesson connect with other lessons?

We can see from the previous paragraphs that the focus of the researchers and practitioners

was on providing solutions, methods and guidelines for eliciting and managing lessons within

projects and organisations. However, outside the fields of management and organisational sci-

ence, most of the work is concentrated on sharing and disseminating the lessons learnt with

others within the field, as discussed in the next paragraph.

Bodycott and Walker [Bodycott and Walker, 2001] discuss the lessons learnt while teaching

www.manaraa.com

Chapter 2. RelatedWork 9

in a higher education setting in Hong Kong. They focused on issues of language and commu-

nication, social and cultural distance, the effect of hierarchy, and teaching strategies. Rogers et

al. [Rogers et al., 2001] present the results from applying the lessons learnt from first decade

of minimal access surgery. The results were positive as the lesson learnt have helped in focus-

ing attention on technical skills training. In the policymaking field, McLaughlin [McLaughlin,

1987] shares and integrates the lessons learnt from the first and second generation of policy

implementation in an attempt to frame the conceptual and instrumental challenge for the third

generation of implementation analysts. As a final example, Olson and Lyles [Olson and Lyles,

2011] provide lessons from the antibody industry and apply them to the biofuels industry in an

attempt to aid those in biofuels licensing.

2.2 Lessons Learnt in Software Engineering

In the field of Software Engineering (SE), lessons learnt have also received some attention. As

in other fields, research on lessons learnt in SE can be roughly categorized into two categories.

The first is research related to discovering and sharing lessons learnt from specific cases with

a wider audience. The literature in this category can be further divided into two subcategories:

(i) an explicit mention of lessons learnt and (ii) an implicit mention of lessons learnt. The same

categorisation applies to the literature on requirements engineering. However, because we are

interested in lessons learnt in requirements engineering in particular, we will only discuss the

literature on explicit lessons learnt in software engineering in general, then both subcategories

will be discussed extensively in the RE section.

The literature that explicitly states and discusses lessons learnt from projects, organisations,

and individual experiences is found throughout the SE literature but not in abundance. Exam-

ples of such studies include Basili’s et al. [Basili et al., 2002] paper in which the authors “give

some lessons learned on what they did right, what they did wrong, and what others can learn

from our experiences” from 25 years of process improvement at NASA’s Software Engineer-

www.manaraa.com

Chapter 2. RelatedWork 10

ing Laboratory. The lessons are organised and presented in a chronological order. In a similar

fashion, Boehm [Boehm, 2006] tries to identify the major lessons he learnt from his experience

in the software engineering industry during the 20th and 21st centuries.

While the previous two papers put forth lessons learnt of a more general nature, other papers

share lessons learnt from a specific project or application of specific tools and/or methods. In

a study by both Basili and Boehm and others [Reifer et al., 2004], the authors share twelve im-

portant lessons about COTS-Based Systems (CBS) maintenance. They state each lesson along

with its source and implications, thus giving it a rough structure as we will discuss in Chapter 3.

Dick and Woods [Dick and Woods, 1997] describe the positive and negative lessons learnt

from the application of the VDM and B methods for the specification, design, and implemen-

tation of an administration subsystem. In another study, the experience factory [Basili et al.,

1994] is tailored and used in an Experience Management System (EMS) developed by the

authors then applied to three experience bases in three different organisations [Lindvall et al.,

2001]. The authors then share their lessons learnt and experience from the applying the EMS to

three organisations: Q-Labs, the Fraunhofer Center, Maryland (FC-MD) and Johnson Control,

Inc. (JCI).

The second category of research on lessons learnt in SE includes studies that propose and

develop methods, processes, and prototypes, and tools for lessons learnt. Given the software

engineering community’s tool-building mindset, the work done in this category is more exten-

sive than in the first category. The literature is rich with studies on tools, methods, prototypes,

frameworks and systems for eliciting, storing, and managing lessons learnt.

Weber has done extensive work in the area of Lessons Learnt Systems. In one study, Weber and

others [Weber et al., 2001] survey forty LL systems found on the WWW that are maintained

www.manaraa.com

Chapter 2. RelatedWork 11

by various government and other organisations and detail their capabilities and limitations.

They first categorised the processes that LL systems are designed to support then they cate-

gorised the systems themselves. They identify five main subprocess that a LL system must

support: (1) collect, (2) verify, (3) store, (4) disseminate, and (5) reuse. The ‘collect’ subpro-

cess can be performed in five different ways: passively, reactively, after an action, proactively

actively and interactively. The verification subprocess is usually done by experts to ensure the

correctness, completeness and uniqueness of the lessons. Storing lessons refers to the repre-

sentation (e.g. level of abstraction) and indexing of lessons, formatting, and the repository’s

framework. Lesson representations can be structured, semi- structured, or in different media.

Lesson dissemination can be done in 5 ways: (1) passive dissemination, (2) active casting, (3)

broadcasting, (4) proactive dissemination and, (5) reactive dissemination. Finally, the reuse

subprocess includes three categories: (1) browsable recommendation, (2) executable recom-

mendation, and (3) outcome reuse. A categorisation of available LL systems is then presented.

The authors categorised the systems according to content, roles, duration, orientation, archi-

tecture, organisation type, confidentiality and size. Some of the surveyed LL systems include:

Berkeley Lab LL Program, DOE Corporate LL Collections, Air Combat Command Center for

LL, Marine Corps LL System, Eureka (Xerox), and RECALL.

In a subsequent study by Weber and Aha [Weber and Aha, 2002], they introduce, describe,

and empirically evaluate the monitored distribution (MD) approach for the active delivery of

lessons learnt in the context of a decision support tool for planning military missions. The

results of the empirical evaluation show that this just-in-time information delivery approach,

embedded in a decision support system (DSS) for plan authoring, significantly improved plan

execution performance measures.

On a similar note, Andrade et al. [Andrade et al., 2007] provide a framework for safety-

critical lessons learnt and present a prototype lesson learnt system for safety-critical software

www.manaraa.com

Chapter 2. RelatedWork 12

with a focus on failures and negative experiences. In a more recent study by the same first

author [Andrade et al., 2013], an architectural model for software testing lesson learnt systems

is proposed. Birk and Tautz [Birk and Tautz, 1998], in their technical report, describe how to

structure and represent lessons learnt. They also present a technical infrastructure for storing,

disseminating, and applying them. Their method is developed and evaluated through three case

studies: (i) Systematic Inspections, (ii) Requirements Engineering, and (iii) GQM-Based Mea-

surement.

Abdel-Hamid and Madnick [Abdelhamid and Madnick, 1990] develop a post mortem diag-

nostic tool for conducting a postmortem diagnostic analysis of a software project to learn from

failures and discern lessons. They analyse both the failures they would like to avoid in the fu-

ture and the successes they want to improve upon from NASA’s DE-A software project, which

was established to design, implement, and test a software system for processing telemetry data

and providing attitude determination and control for the DE-A satellite. Their approach, how-

ever, is concerned with the managerial aspect of software engineering rather than technical one.

Different structured approaches for eliciting and identifying lessons have been proposed, such

as the approximate reasoning-based approach [Vandeville and Shaikh, 1999], Case-Based Rea-

soning (CBR) approach [Sary and Mackey, 1995], and the Experience Factory Framework

[Basili et al., 1994].

2.3 Lessons Learnt in Requirements Engineering

Although lessons learnt have received attention in software engineering in general, unfortu-

nately, the same case cannot be said to hold true for lessons learnt in requirements engineering

in particular. As we’ve seen in Section 1, the results from our survey indicate that lessons learnt

haven’t received much attention in requirements engineering practice either; around 82% of the

respondents indicated that requirements engineering LL are important for their organisation’s

www.manaraa.com

Chapter 2. RelatedWork 13

RE processes. However, 72% stated that RE LL are only occasionally/hardly ever used in their

organisation [Noorwali and Madhavji, 2012]. Our findings from the literature search support

our survey’s results. We will discuss the related work done on lessons learnt in requirements

engineering using the same categorisations used for discussion in the SE section.

With regard to sharing lessons learnt from projects, organisations, and personal experiences,

some papers discuss some lessons in RE explicitly [Daneva, 2004, Damian, 2007, Berenbach,

2012], but lessons learnt are mainly implicit in the literature [Lauesen and Kuhail, 2012, Gib-

son et al., 2011, Kong and Hayes, 2011, Boulila et al., 2011]. Out of the 209 lessons we elicited

from two year literature, only 47 lessons were mentioned explicitly (i.e., 22%), as we will dis-

cuss at length in Chapter 5.

Under the category of LL supporting tools, processes and methods, software requirements

patterns [Withall, 2007] are the closest to lessons learnt. A requirements software pattern is

“a guide to writing a particular type of requirement. It explains how to tackle that type of re-

quirement, what to say, what to worry about, and it suggests additional requirements you might

need to write too”. It enables requirements engineers to reuse requirements that are recurrent

by providing them with a systematic means to specify new requirements. A recurring lesson

learnt can eventually become a requirement pattern if it satisfies a pattern’s criteria.

The technical infrastructure described in section 2.2 for storing, disseminating, and applying

lessons has been developed using a requirements engineering case study among three others to

develop and evaluate the method, thus, rendering it suitable for use in a requirements engineer-

ing setting [Birk and Tautz, 1998].

www.manaraa.com

Chapter 2. RelatedWork 14

2.4 Analysis and Research Gap

The concept of lessons learnt is common throughout a variety of disciplines [Lee, 2008, Body-

cott and Walker, 2001, Rogers et al., 2001, Olson and Lyles, 2011], as we’ve seen in earlier

sections, denoting its importance. Researchers’ and practitioners’ emphasis on the importance

of learning from past experiences [Boehm, 2006, Abdelhamid and Madnick, 1990] further

supports the argument for lessons learnt. Moreover, the results from the survey we conducted

indicate that approximately 90% of the survey participants stated that not utilising RE lessons

has significant negative impact on product quality, productivity, project delays and cost over-

runs [Noorwali and Madhavji, 2012].

Despite this emphasis on the importance of lessons learnt and the abundance of research done

on the topic in non-SE disciplines and in SE, lessons learnt in requirements engineering are

scarce, scattered and mainly implicit, making the state of lessons learnt in RE rather vague.

This implicit and vague state of lessons make accessing and reusing lessons learnt in RE pro-

cesses a difficult task. In addition, current LL-oriented tools, systems and processes are mainly

organisational-level making it difficult to utilise these tools and methods on an individual and

team level. The focus of this study, therefore, is to fill in this gap by proposing the concept

of maps of lessons learnt in requirements engineering and populating these maps with lessons

elicited from the RE literature and practice in an attempt to understand the current state of

lessons learnt across the different RE subprocesses and to provide practitioners with a solution

that is anticipated to have impact on project costs, time, and quality. To our knowledge, such

an attempt has not yet been made and our concept of RE Lesson Maps is novel.

www.manaraa.com

Chapter 3: The Concept of a Lesson and Lesson Map

This chapter discusses the concepts of a lesson and lesson map in a generic sense. In section

3.1, we discuss the concept of a lesson by listing the definitions of a lesson from various

dictionaries and literary sources (section 3.1.1) and describing its representation (section 3.1.2).

Section 3.2, presents the concept of a lesson map.

3.1 Lesson Concept

The term ‘lesson’ has numerous definitions. In this section, we list the definitions from well-

known sources. The definitions are categorised based on the following: (i) literature definitions

and (ii) dictionary definitions. For our research, we use the definitions from the literature as

they are more encompassing and relevant to our work.

3.1.1 Lesson Definition

Literature Definitions

• A “good work practice” or innovative approach that is captured and shared to promote

repeat application. A lesson learned may also be an adverse work practice or experience

that is captured and shared to avoid recurrence [DOE-STD-7501-99, 1999].

• A lesson learnt is the knowledge acquired from an innovation or an adverse experience

that causes a worker or an organization to improve a process or activity to work safer,

more efficiently, or with higher quality [Weber et al., 2001].

• A lesson learnt is a recorded experience of value; a conclusion drawn from analysis of

feedback information on past and/or current programs, policies, systems and processes.

Lessons may show successes or innovative techniques, or they may show deficiencies

or problems to be avoided. A lesson may be: 1. An informal policy or procedure. 2.

Something you want to repeat. 3. A solution to a problem, or a corrective action. 4. How

15

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 16

to avoid repeating an error. 5. Something you never want to do (again) [Weber et al.,

2001].

• A lesson learnt is a knowledge or understanding gained by experience. The experience

may be positive, as in a successful test or mission, or negative, as in a mishap or failure.

Successes are also considered sources of lessons learnt. A lesson must be significant in

that it has a real or assumed impact on operations; valid in that is factually and technically

correct; and applicable in that it identifies a specific design, process, or decision that

reduces or eliminates the potential for failures and mishaps, or reinforces a positive result

[Secchi et al., 1999].

• Lessons learned (LL) are part of knowledge gained from experiences during a project

and in the post mortem phase. It was initially conceived of guidelines, checklists or tips

of what went right or wrong in every event worth mentioning, in projects activities [Jalili

et al., 2011].

Dictionary Definitions

• An occurrence, example, rebuke, or punishment, that serves or should serve to warn or

encourage. [Pearsall and Trumble, 1995]

• An experience or event that serves as a warning or encouragement. [Oxford, 2013b]

• An experience, especially an unpleasant one, that makes you more careful in the future.

[Summers, 1987]

• Lesson is an experience which teaches you how to behave better in a similar situation in

the future. [Cambridge, 2013a]

• Lesson is a punishment or bad experience that teaches you something. [Macmillan,

2013a]

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 17

• Lesson is an experience, especially an unpleasant one, that somebody can learn from so

that it does not happen again in the future. [Oxford, 2013a]

• Something that you have learned or that must be learned. [Oxford, 2004]

• Something, especially a piece of wisdom, learnt by study or experience. [Allen, 2003]

• An instructive or warning example. [Allen, 2003]

• An instructive example. [Merriam-Webster, 2013]

• A thing inculcated by experience or study. [Pearsall and Trumble, 1995]

• That which is learned or taught by an express effort; instruction derived from precept,

experience, observation, or deduction; a precept; a doctrine; as, to take or give a lesson

in drawing. A smooth and pleasing lesson. [Webster, 1913]

• A lesson is a useful piece of information learnt though experience. [Cambridge, 2013b]

• Something that needs to be learned (or the event through which it is learned) for the sake

of one’s safety, well-being, etc. [Webster, 2013]

• Something from which useful knowledge or principles can be learnt. [Collins, 2013]

• Something from which a person learns or should learn; an instructive example. [Dictio-

nary.com, 2013a]

• A useful piece of practical wisdom acquired by experience or study. [Dictionary.com,

2013a]

• A lesson is a thing learnt by experience. [Oxford, 2013b]

• Something that you learn from life, an event, or an experience. [Macmillan, 2013a]

• Lesson is something learned by study or experience. [Merriam-Webster, 2013]

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 18

3.1.2 Lesson Representation

Many researchers have given formal representations [Birk and Tautz, 1998, Weber et al.,

2001, Wangenheim et al., 1998] for a lesson using ‘attributes’ that are suitable for a specific

discipline or task. Researchers have used different terms to refer to a lesson’s attributes. Some

have used the term attribute [Weber et al., 2001, Andrade et al., 2007], descriptor [Andrade

et al., 2013], and feature or field [Sary and Mackey, 1995]. In this study, we will use the term

attribute to refer to the ‘fields used to contain the different pieces of information related to a

lesson that are needed to fully represent a lesson learnt ’.

It is important to note that organisations use different formats (i.e., different combinations of

attributes) to represent lessons in their LL systems [Weber et al., 2001]. This indicates that

a universal representation for lessons learnt does not exist, but representations and attributes

are tweaked according to the needs of the organisation, domain, and/or task employing lessons

learnt.

In this section, we list the different attributes used to represent lessons across different dis-

ciplines, mainly software engineering. The attributes are categorised into two categories:

(i) generic attributes, (ii) extended attributes. These attributes are also used for representing

lessons in RE. The attributes and their values with relation to RE are detailed in Chapter 4.

Generic Attributes

The generic attributes are needed to represent a lesson regardless of organization, field, and/or

task. While the list is not exhaustive of what is available in the literature, we have chosen those

attributes that are relevent to most contexts in software engineering and specifically RE, and

left out those that are meant for a specific domain or area. Each attribute is supported by a

citation to the corresponding literature.

• Lesson [DOE-STD-7501-99, 1999]: This is the text describing the lesson learnt.

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 19

• Rationale/Justification [Wangenheim et al., 1998]: This explains the reason behind the

given lesson and why it is important.

• Impact [Weber et al., 2001]: The anticipated or observed impact of the stated lesson that

may be either positive or negative.

• Repeatability [Andrade et al., 2007]: This attribute specifies the properties of the lesson

which makes it repeatable and the context in which it is repeatable including any contexts

in which it may not be repeatable. This gives a level of confidence to the lesson. A lesson

derived from several experiments, for example, has a higher level of confidence than a

lesson derived from a single case study.

• Source [Reifer et al., 2004]: The source of the lesson can include: experience reports,

project memos, presentation slides, the minutes from project post-mortem meetings or

GQM feedback sessions, the results from project or technology evaluations, interviews,

questionnaires, surveys, brainstorming meetings, capturing of ad-hoc statements during

project work [Birk and Tautz, 1998], people, literature, books, etc.

• Target Object [Birk and Tautz, 1998]: The target object of a lesson learnt is the artifact

that the lesson learnt is about. It may be a process, a product, a technique or method,

some policy, etc.

• Type [Weber et al., 2001]: Type indicates whether a lesson is positive (one learnt from

a successful past experience) or a negative lesson (one learnt from an unsuccessful past

experience).

• Application domain [Wangenheim et al., 1998]: the application domain from which a

specific lesson was derived. Examples of the values of this attribute in our case, for

example, are critical systems, security systems, information system, etc.

• Project size [Birk and Tautz, 1998]: the project size indicates the size of the project from

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 20

which the lesson was derived (e.g., number of people, number of LOC or function-points,

person-years, etc.).

• Software process [Sommerville, 2011, Andrade et al., 2013]: Some researchers have

referred to this as a development model. We will use the term ‘process’ in our study. This

attribute indicates the type(s) of software process(es) used in the project from which the

lesson has been derived. A software process is defined as: A systemic approach that is

used in software engineering. It is a sequence of activities that lead to the production of

a software product (e.g. agile, waterfall, incremental development, spiral, code-and-fix,

rapid prototyping, unified process, extreme programming etc.).

• Phase [Andrade et al., 2007, Andrade et al., 2013]: While some use the term ‘activity’ or

‘life cycle phase’, we will use ‘phase’ here. In software engineering, possible values for a

phase may be system requirements definition, system design, software requirements def-

inition, software design, human-interface design, implementation, modelling/simulation,

testing, deployment, usage, maintenance. In RE, phases refer to the different RE activi-

ties such as elicitation, specification, validation, etc.

• Practice: A practice is a specific way for achieving a particular goal. For example, in RE,

a practice is a specific way for achieving a particular software development goal and it

may be applied to one or more subprocesses (e.g., prototyping, using checklists, use case

modelling, prioritisation via voting, tracing using a requirements tool, win-win model

of negotiation, elicitation via interviews, using a prioritisation framework, etc.) [Som-

merville and Sawyer, 1997]. In testing, on the other hand, example practices include

using reviews and inspection and specifying formal entry and exit criteria [Chillarege,

1999]. While the literature on the representation of lessons learnt does not discuss the

use of ‘practice’ as an attribute, we’ve added it to our list of attributes as it will be useful

in trying to identify all the lessons under, for example, prototyping for elicitation. Thus,

playing an important role in achieving our goal of understanding the state of lessons

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 21

learnt across RE. Likewise, it can be useful in other disciplines.

• Project date: This indicates the date of the project from which the lesson has been de-

rived. This is important because an older lesson may not be as effective as a newer one

in a certain context.

• Recording date [Wangenheim et al., 1998, Andrade et al., 2013]: The date at which the

lesson was created/recorded.

• Organisation name [Wangenheim et al., 1998]: The name of the organization from which

the lesson was derived.

Extended Attributes

For our study, we added five more ‘extended’ attributes that, we believe, are needed in our case

to help us achieve our research objective of understanding the current state of lessons learnt in

RE.

• Expression: Expression indicates whether a lesson was explicitly expressed as a lesson

learnt in the literature, or the context and surrounding literature had to be analysed to

elicit the lesson. This will aid us in determining the awareness of the RE community

towards lessons learnt. The results will be discussed in detail in Chapter 6.

• Year: Indicates the year of the publication from which the lesson was elicited. This is

essential for comparing the state of lessons learnt in the different years.

• Journal: The name of the journal from which the lesson was elicited.

• Conference: The name of the conference in which the publication containing the lesson

learnt was presented.

• Workshop: The name of the workshop in which the publication containing the lesson

learnt was presented. These last three attributes will help us determine where the majority

of lessons learnt are coming from.

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 22

Extended attributes can be removed and added depending on the need for them in a specific

context. Other extended attributes that may be added depending on the environment include:

department; project name; author, etc.

3.2 Lesson Map Concept

3.2.1 Map Definition

To shed any ambiguity on the use of the term ‘map’, we provide a number of definitions from

a variety of dictionaries. A ‘map’ is defined as:

• An image of an area that shows the positions of things such as countries, rivers, cities, and

streets. Used about other types of images that show the positions of things. [Macmillan,

2013b]

• A maplike delineation, representation, or reflection of anything. [Dictionary.com, 2013b]

• A diagram or collection of data showing the spatial arrangement or distribution of some-

thing over an area [Oxford, 2013c]

In our case, a ‘map depicts an arrangement and distribution of lessons learnt over an “area”

according to specific attributes. An area is denoted by the set of attributes of interest. For ex-

ample, “elicitation” intersected with “real-time” systems denotes a set of lessons learnt relevant

to “elicitation” and “real-time” systems. This idea facilitates a user to define his or her own

areas of interest in selecting lessons learnt. In this respect, such a “map” is not a “road map”

that shows one the path to follow to reach a destination; rather, it is akin to maps in atlases.

3.2.2 The Concept of a Lesson Map

With reference to the definitions of a map in section 3.2.1, a lesson map is based on two types

of elements:

• Content. The content of the map is the lessons learnt. In our study, the content is the

lessons elicited from literature and practice (discussed in Chapter 5 and 6).

www.manaraa.com

Chapter 3. The Concept of a Lesson and LessonMap 23

• Context. The context includes specific attributes selected by the user. In our specific case,

the context consists of any combination of the context attributes we presented in section

3.1: source, target object, type, application domain, project size, practice, phase, soft-

ware process, project date, recording date, organisation name, rationale, impact, and/or

repeatability.

In principle, therefore, it is possible to produce many permutations of lesson maps, e.g.: prac-

tices; practices X phases; practices X phases X application domains; project size X phases X

sources; application domain X process type; etc. The actual rendering of a map in various

permutations is a matter of technological support, which is outside the scope of this work.

After populating a map with some lessons learnt, it can be indicative of the state of lessons

learnt in RE (in a project, organisation, body of knowledge, etc.) identified by scarce (dark)

and abundant (bright) areas of the map (see Table 3.1). Let us assume that context attributes

X and Y (selected by the user) are values for the attributes ‘phase’ and ‘practice’, respectively,

where they are depicted here as a table but could be depicted in another form (e.g. hierarchi-

cally). LL1, LL2, etc., are the lessons learnt relating to specific phases and practices. Examples

of dark areas (low number of lessons learnt) are: X3Y2 and X4Y2 and of bright areas (high

frequency of lessons learnt) are: X1Y1and X2Y3.

Table 3.1: An example map with context attributes X and Y.

X1 X2 X3 X4 . . .
Y1 LL1, LL2, LL3 LL7, LL8 LL13 LL6
Y2 LL16 LL4, LL5
Y3 LL17, LL18 LL9, LL10, LL11, LL12 LL14, LL15, LL6 LL6

www.manaraa.com

Chapter 4: The Concept of Lessons and Lesson Maps in RE

In this chapter we apply the concepts explained in Chapter 3 to the RE field. Section 4.1 dis-

cusses the representation of a RE Lesson and the values of the attributes in detail. In section 4.2,

we describe the RE Lesson Map. Finally, in section 4.3, we describe the validation processes

used for validating the RE Lesson and RE Lesson Map.

4.1 RE Lesson

A RE Lesson has the attributes discussed in Chapter 3: lesson, rationale/justification, impact,

repeatability, source, target object, type, application domain, project size, software process,

phase, practice, project date, recording date, organisation name, expression, year, journal, con-

ference, workshop.

In this section, we describe the possible values for each attribute specific to the RE field. It is

important to note that the values of the attributes may fall into one of the following categories:

(i) attributes that have a set of countable, fixed, concise values (e.g., type, phase, expression),

which we will call ‘category A’, (ii) attributes that have uncountable, long, explanatory values

(e.g., rationale/justification, impact), which we will call ‘category B’ and (iii) attributes that do

not have a fixed set of values, as new values may emerge depending on the domain, project,

organization, etc., but are usually relatively short (e.g., project size, application domain, prac-

tice, project date, organisation name), which we will call ‘category C’.

Note: In the following, the values that have one, two, or three citations were found in only that

number of papers. The values that have three or more citations were found in many papers, but

we are listing only a few of them here.

• Lesson: The values of this attribute are of category B; it contains the text of the lesson

itself.

24

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 25

• Rationale/Justification: The values of this attribute are of category B; it contains the text

that explains the reason behind the given lesson and why it is important.

• Impact: The values of this attribute are of category B; it contains the text that describes

the anticipated or observed impact of the stated lesson that may be either positive or

negative.

• Source: The values of this attribute are of category C. In Chapter 3, we stated that the

source of the lesson can include: experience reports, project memos, presentation slides,

the minutes from project post-mortem meetings or GQM feedback sessions, the results

from project or technology evaluations, interviews, questionnaires, surveys, brainstorm-

ing meetings, capturing of ad-hoc statements during project work, people, literature,

books, etc. However, because our lessons come mainly from the literature, we used this

attribute to indicate whether the lesson came from a controlled experiment, case study,

industrial experience, etc. The following list enumerates all the sources we have found

during our lesson elicitation process. It is important to note, however, that the sources

have been gathered and used according to the exact terms used in the source papers.

– Controlled experiment [Niknafs and Berry, 2012, Calefato et al., 2012, El-Sharkawy

and Schmid, 2011, Pires et al., 2011]

– Experiment [Schmidt et al., 2012, Ohashi et al., 2011, Chen et al., 2011, Kong and

Hayes, 2011]

– Evaluating experiment [Yang et al., 2012, Yi et al., 2012, Gross et al., 2012]

– Exploratory experiment [Li et al., 2011]

– Quasi experiment [Uusitalo et al., 2011, Gonzales and Leroy, 2011]

– Case study [Behnam et al., 2012, Penzenstadler and Eckhardt, 2012, Borges et al.,

2011, Kof and Penzenstadler, 2011]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 26

– Evaluating case study [Charrada et al., 2012, Gordon and Breaux, 2012, Maxwell

et al., 2012a]

– Evaluating exploratory case study [Niu and Mahmoud, 2012]

– Confirmatory case study [Shaker et al., 2012]

– Retrospective case study analysis [Morales-Ramirez et al., 2012]

– Pilot case study [Veerappa and Letier, 2011]

– Explanatory case study [Bjarnason et al., 2011]

– Industrial experience [Tawhid et al., 2012, Chernak, 2012, Nolan et al., 2011, Vogl

et al., 2011]

– Workshop [Massacci et al., 2012]

– Survey [Anh et al., 2012, Poort et al., 2012, Wever and Maiden, 2011]

– Questionnaire [van Tuijl et al., 2011, Gross and Doerr, 2012, Bjarnason et al., 2012]

– Pilot Study [Sharma and Biswas, 2012]

– Illustrative example [Lutz et al., 2012, Cleland-Huang et al., 2012]

– Simulation [Cleland-Huang et al., 2012]

– Qualitative study [Sim and Alspaugh, 2011]

– Systematic review [Dieste and Juristo, 2011]

– End-user study [Kamalrudin et al., 2011]

– Evaluating example [Merten et al., 2011]

– Document analysis study [Reggio et al., 2011]

– Field assessment [Daramola et al., 2011]

• Repeatability: The values of this attribute in our study are of category C. Because litera-

ture was the main source of our lessons, this attribute contains information from the paper

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 27

on whether the results of the lesson, for example, are first time results of a controlled ex-

periment or confirm existing results. It depends on the value of the ‘source’ attribute.

Example values include: first-time case study results, first-time controlled experiment

results, first-time industry results, 4 studies, etc.

• Target Object: The values of this attribute in our study are of category C. The target

object of a lesson learnt is the artifact that the lesson learnt is about. It may be a process,

a product, a technique or method, some policy, etc. The following list includes all the

values we found during our study:

– Technique/method [Berenbach, 2012, Teka et al., 2012, Markov et al., 2011, Jones,

2011]

– Tool [Svensson et al., 2011, Mashkoor and Jacquot, 2011, Smialek et al., 2012,

Hussain et al., 2012]

– Policy [Gordon and Breaux, 2012, Maxwell et al., 2012a, Schmidt et al., 2011,

Isaacs and Berry, 2011]

– Artifact: requirements [Gross and Doerr, 2012]

– RE analysts [Niknafs and Berry, 2012]

– People [Wever and Maiden, 2011, Massey et al., 2011]

– Language [Luna et al., 2011, Gordon and Breaux, 2011, Teruel et al., 2011, Pasquale

and Spoletini, 2011]

• Type [Weber et al., 2001]: The values of this attribute are of category A. The values may

be one of the following:

– Positive [Weber et al., 2001]: A lesson learnt from a successful experience or study

that yielded positive results.

– Negative [Weber et al., 2001]: A lesson learnt from an unsuccessful experience or

study that yielded negative results.

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 28

– Neutral: A lesson that is neither positive nor negative, but the knowledge learnt can

be actively utilised.

• Application domain: The values of this attribute in our study are of category C; it indi-

cates the application domain from which a specific lesson was derived. The following

application domains were derived from our study:

– Automotive [Post et al., 2012]

– Medical [Charrada et al., 2012]

– Software intensive [Niu and Mahmoud, 2012]

– Healthcare [Maxwell et al., 2012a]

– Weather station and graph product line [Yi et al., 2012]

– University [Niknafs and Berry, 2012]

– Pharmaceutical industry [Sapkota et al., 2012]

– Library [Sharma and Biswas, 2012]

– Student registration and and grading [Sharma and Biswas, 2012]

– DNA nanotechnology [Lutz et al., 2012]

– Robotic systems [Cleland-Huang et al., 2012]

– Aviation security [Braun et al., 2012]

– Aviation transportation [Tawhid et al., 2012]

– Banking [Chernak, 2012]

– Chemical and power plants [Berenbach, 2012]

– Service-based systems [Torres et al., 2012]

– Drinking-water production [Engelsman and Wieringa, 2012]

– Business [Hussain et al., 2012]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 29

– Academic [Hussain et al., 2012]

– Air traffic management [Raspotnig and Opdahl, 2012]

– Socio-technical systems [Morales-Ramirez et al., 2012]

– IT [Berenbach, 2012]

– Online shopping system [Savio and P.C., 2012]

– Industrial automation plant management [Savio and P.C., 2012]

– Finance [Maxwell et al., 2012b]

– Telecommunication [Schneider et al., 2012]

– Safety-critical system [Alrajeh et al., 2012]

– Micro-survey mobile application [Zhu and Herrmann, 2012]

– Electronic and land registry system [Lauesen, 2012]

– Software project management [Wang et al., 2012]

– Drives [Hauksdottir et al., 2012]

– Solar [Hauksdottir et al., 2012]

– System of systems [Penzenstadler and Eckhardt, 2012]

– Software product line (SPL) [Wu et al., 2012]

– Home control devices [Loft et al., 2012]

– Energy [Berenbach et al., 2012]

– Mail sorting system [Berenbach et al., 2012]

– Pump systems [Borges et al., 2011]

– Steam boilers [Kof and Penzenstadler, 2011]

– Datacenter operations [Helferich and Mautsch, 2011]

– Event management [Mahaux et al., 2011]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 30

– Public safety [Adam, 2011]

– Developer asset software platform [Markov et al., 2011]

– Transportation systems [Mashkoor and Jacquot, 2011]

– Information and communication technologies (ICT) [Pitula and Radhakrishna, 2011]

– Nuclear power plants [Uusitalo et al., 2011]

– High-frequency radio-based systems (FAS) [Dietsch et al., 2011]

– Ticket machines [Boulila et al., 2011]

– Aerospace [Nolan et al., 2011]

– Mobile applications [Vogl et al., 2011]

– Embedded systems [Bjarnason et al., 2011]

– Ambulance service systems [Heaven and Letier, 2011]

– Hearing solutions [Waldmann, 2011]

– Rail lock systems [Daramola et al., 2011]

– Steam boiler control systems [Daramola et al., 2011]

– Patient monitoring agents [Morandini et al., 2011]

– Washing machine managers [Morandini et al., 2011]

– ERP vendors [Salfischberger et al., 2011]

– Mobile handsets [Svensson et al., 2011]

– Mobile media management systems [Goulao et al., 2011]

– Office printers production [Marincic et al., 2011]

– Semiconductors [Chopra and Singh, 2011]

– Voting systems [Gibson et al., 2011]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 31

• Project size: The values of this attribute in our study are of category C; it indicates

the size of the project from which the lesson was derived (e.g., number of people in a

project, number of LOC or function-points, person-years, etc.). Some researchers have

chosen specific metrics to identify project size [Andrade et al., 2013]. We list here some

examples of project size values we identified for their corresponding lessons during our

study:

– ‘Eleven full-text requirements documents’ [Yang et al., 2012].

– ‘Six business requirements and a Java code base containing over 500 classes’ [Niu

and Mahmoud, 2012].

– ‘22 features, 196 feature pairs, 6 requires, and 5 excludes’ [Yi et al., 2012].

– ‘400 technical requirements’ [Boutkova, 2011].

– ‘The platform functionality included around 170 functions and was encapsulated in

17 CSD’ [Adam, 2011].

– ‘The company employs about 20 people, of which three are dedicated software

developers’ [Dietsch et al., 2011].

• Software process: The values of this attribute in our study are of category C. Although

category A may seem more suitable for this attribute, we chose not to limit the values

of this attribute to our list as organisations and teams may use new approaches or mixed

approaches we have not listed. ‘Software process’ indicates the type(s) of software pro-

cess(es) used in the project from which the lesson has been derived. It is defined as “a

systemic approach that is used to in software engineering. It is a sequence of activi-

ties that leads to the production of a software product”. Values for the software process

attribute include [Sommerville, 2011]:

– Agile

– Waterfall

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 32

– Iterative

– Spiral

– Incremental

– Scrum

– Rapid Prototyping

– Adaptive Software Development

– Feature Driven Development

– Extreme Programming

– The Rational Unified Process

• Phase: The values of this attribute in our study are of category A; it refers to the following

RE activities [Kotonya and Sommerville, 1998]:

– Elicitation

– Analysis

– Prioritisation

– Negotiation

– Specification

– Documentation

– Verification

– Validation

– Managing

• Practice: The values of this attribute in our study are of category C; it is a specific way

for achieving a particular goal. For example, in RE a practice is a specific way for

achieving a particular software development goal and it may be applied to one or more

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 33

subprocesses (e.g., prototyping, using checklists, use case modelling, prioritisation via

voting, tracing using a requirements tool, win-win model of negotiation, elicitation via

interviews, using a prioritisation framework, etc.) [Sommerville and Sawyer, 1997]. The

following list includes the practices we have derived from our study:

– Tracing [Cleland-Huang et al., 2012, Engelsman and Wieringa, 2012, Gervasi and

Zowghi, 2011, Markov et al., 2011]

– Modeling [Raspotnig and Opdahl, 2012, Berenbach et al., 2012, Markov et al.,

2011, Mashkoor and Jacquot, 2011]

– Communication [Savio and P.C., 2012, Bjarnason et al., 2011, Waldmann, 2011]

– Prototyping [Poort et al., 2012, Atladottir et al., 2012, Gibson et al., 2011]

– Reuse [Hauksdottir et al., 2012, Ernst et al., 2011, Boutkova and Houdek, 2011]

– Using a prioritisation framework [Kukreja et al., 2012]

– Interviews [Morales-Ramirez et al., 2012, Dieste and Juristo, 2011]

– Brainstorming [Sakhnini et al., 2012, Erra and Scanniello, 2011, Boulila et al.,

2011]

– Annotation [Hussain et al., 2012, Sapkota et al., 2012]

– Using use cases [Lauesen and Kuhail, 2012, Mahaux et al., 2011]

– Using specification pattern systems (SPS) [Post et al., 2012]

– Using text-based synchronous communication [Calefato et al., 2012]

– Automatic checking [Knauss and Schneider, 2012, Post et al., 2011]

– Using requirements patterns [Sharma and Biswas, 2012, Behnam et al., 2012, Daramola

et al., 2012]

– Using PRISM model checker [Lutz et al., 2012]

– Using task descriptions [Lauesen and Kuhail, 2012]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 34

– Using feature trees [Fricker and Schumacher, 2012]

– Using War Stories Approach [Sim and Alspaugh, 2011]

– Using social networks [Chopra and Singh, 2011]

– Using a framework [Asnar et al., 2011, Salfischberger et al., 2011, Sunindyo et al.,

2011]

– Using model-driven development [Goulao et al., 2011]

– Using a modeling language [Morandini et al., 2011]

– Automatic tracing [Kong and Hayes, 2011]

– Using a specification language [Sharma and Biswas, 2011]

– Visualizing traceability information [Merten et al., 2011]

– Using observation techniques [Brill and Knauss, 2011]

– Using quantitative goal models [Heaven and Letier, 2011]

– Using software quality models [Carvallo and Franch, 2011]

– Assisted tracing [Dekhtyar et al., 2011]

– Using templates [Uusitalo et al., 2011, Rauf et al., 2011]

– Story-telling [Boulila et al., 2011]

– Using visual narratives [Dietsch et al., 2011]

– Using metrics [Massey et al., 2011]

– Using CPR analysis [Schmidt et al., 2011]

– Using storyboards [Sutcliffe et al., 2011]

– Using scenarios [Sutcliffe et al., 2011]

– Semi-automated checking [Kamalrudin et al., 2011]

– Protocol analysis [Dieste and Juristo, 2011]

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 35

• Project date: The values of this attribute in our study are of category C; it indicates the

date of the project from which the lesson has been derived.

• Recording date: The values of this attribute in our study are of category C; it indicates

the date at which the lesson was created/recorded.

• Organisation name: The values of this attribute in our study are of category C; it contains

the name of the organization from which the lesson was derived.

• Expression: The values of this attribute are of category A. The values may be one of the

following:

– Explicit: The lesson was explicitly expressed as a lesson learnt in the literature.

‘Experience’ and ‘learned from experience’ were considered synonyms that indi-

cated an explicit mention of lessons learnt.

– Implicit: the context and surrounding literature had to be analysed to elicit the

lesson.

• Year: The values of this attribute are of category A. The values may be one of the fol-

lowing:

– 2011

– 2012

• Journal: The values of this attribute are of category A. The values may be one of the

following:

– RE (Requirements Engineering Journal)

– EMSE (Empirical Software Engineering Journal)

– TSE (IEEE Transactions on Software Engineering Journal)

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 36

• Conference: The values of this attribute are of category A. The values may be one of the

following:

– IEEE RE (IEEE International Requirements Engineering Conference)

– REFSQ (International Working Conference on Requirements Engineering: Foun-

dation for Software Quality)

– ICSE (International Conference on Software Engineering)

• Workshop: The values of this attribute are of category A. The values may be one of the

following:

– EmpiRE (Workshop on Empirical Requirements Engineering)

– MoDRE (Workshop on Model-Driven Requirements Engineering)

– REET (Workshop on Requirements Engineering Education and Training)

– RELAW (Workshop on Requirements Engineering and Law

– RePa (Workshop on Requirements Patterns)

– RESS (Workshop on Requirements for Systems, Services, and Systems-of-Systems)

– TwinPeaks (Workshop on Twin Peaks of Requirements Engineering)

– MaRK (Workshop on Managing Requirements Knowledge)

– Mere (Workshop on Multimedia and Enjoyable Requirements Engineering)

– RE@Runtime (Workshop Requirements@run.time)

– RESC (Workshop on Requirements Engineering for Social Computing)

– REVOTE (Workshop on Requirements Engineering for E-Voting Systems)

– REEW (Requirements Engineering Efficiency Workshop)

– EPICAL (Workshop on Empirical Research in Requirements Engineering: Chal-

lenges and Solutions)

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 37

– RE4SuSy (Requirements Engineering for Sustainable Systems)

– RePrico (Requirements Prioritisation for Customer Oriented Development Work-

shop)

– CreaRE (Creativity in Requirements Engineering Workshop)

The attributes we presented and described are the attributes we used to represent the lessons

we derived from literature and practice. However, after eliciting a large number of lessons,

we observed that some attributes were almost never filled and that there was a need for further

attributes in order to better understand the context of the lesson. For our future work in lessons

learnt, we plan to use the following attributes:

• Limitations/Side effects: Although we have an attribute for ‘impact’, a single attribute

proved to be vague and confusing because some lessons may have a combination of

both positive and negative effects. Therefore, the ‘impact’ attribute can be divided into

positive impact and negative impact. The decision to apply a lesson or not would be then

left to the user’s discretion.

• Related lessons: Some lessons are only applicable if another lesson is applied, thus,

making them ‘lessons learnt on lessons learnt’. Therefore, it is important to add an

attribute that specifies whether it is a sub-lesson or a parent-lesson and all the related

lessons.

4.2 RE Lesson Map

In an attempt to create a discipline surrounding lessons learnt in RE, we apply the concepts

of a map of lessons learnt that we presented to in Chapter 3 to RE. A RE lesson map has two

elements:

• Content. The content of the map is the lessons elicited from literature and practice (dis-

cussed in Chapter 5 and 6).

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 38

• Context. The context is represented by the attributes and values discussed in section 4.1.

Different permutations can be created. For example:

– Type (see Figure 4.1). This Lesson Map depicts the distribution of lessons learnt

(LL) according to lesson type (i.e., positive, negative and neutral).

– Phase X Software Process (see Figure 4.2). This Lesson Map depicts the distribu-

tion of the lessons learnt (LL) related to the values of the ‘Phase’ and ‘Software

Process’ attributes.

– Target Object X Phase X Expression (see Figure 4.3). This Lesson Map depicts the

distribution of the lessons learnt (LL) related to the values of the ‘Target Object’,

‘Phase’ and ‘Expression’ attributes.

The combination of attributes may take as many attribute values as possible (e.g. 4, 5, 6 or

more attribute values). We, however, resorted to giving examples of three maps due to the

difficulty in representing more complex combinations using a table format. With adequate tool

support, the different renderings can be supported (see Appendix D).

Figure 4.1: A Lesson Map with ‘Type’ attribute

4.3 Validation Processes of the RE Lesson and Lesson Map

The concepts of a lesson and lesson map in general and in RE have gone through several val-

idation processes during our study. The concepts were continuously validated throughout the

study by using expert evaluation. Four internal RE experts and one senior RE expert evaluated

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 39

Fi
gu

re
4.

2:
A

L
es

so
n

M
ap

w
ith

‘P
ha

se
’a

nd
‘S

of
tw

ar
e

Pr
oc

es
s’

at
tr

ib
ut

es

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 40

Fi
gu

re
4.

3:
A

L
es

so
n

M
ap

w
ith

‘T
ar

ge
tO

bj
ec

t’
an

d
‘P

ha
se

’a
nd

‘E
xp

re
ss

io
n’

at
tr

ib
ut

es

www.manaraa.com

Chapter 4. The Concept of Lessons and LessonMaps in RE 41

the concepts for their completeness, validity, and potential problems.

In addition, a research preview was published in the Proceedings of the 19th International

Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ13)

[Noorwali and Madhavji, 2013a], which was reviewed by four reviewers. The presentation of

the paper led to further improvement through discussions and feedback from the participants

at REFSQ.

www.manaraa.com

Chapter 5: The Empirical Study on RE Lessons

In order to fulfill our study’s overall research purpose of understanding and determining the

state of lessons learnt in RE and promoting its use, we adopted a study method that is both

solution-building and knowledge seeking. While the concept of “Lesson Maps” presented in

Chapters 3 and 4 constituted the solution-building part of this study, this chapter describes the

knowledge-seeking part of our study (i.e., empirical study).

We conducted two studies, a systematic literature review [Kitchenham, 2004] and survey, to

elicit lessons from literature and practice, which in turn, was used to populate the lesson maps.

This chapter describes the systematic literature review and survey we conducted, which in-

cludes the research goal and questions (section 5.1), the research methods used (section 5.2),

and finally, the threats to validity (section 5.3).

5.1 Research Goal and Questions

In section 1.1 we discussed the results from an initial survey we conducted [Noorwali and

Madhavji, 2012] (see Appendix A for survey). For convenience, we will restate the results

here: we found that around 82% of the respondents indicated that RE LL are important for their

organisation’s RE processes. However, 72% stated that RE LL are only occasionally/hardly

ever used in their organisations. The statistics for the difficulty of finding, gathering, eliciting

and getting access to RE LL from various sources were as follows:

42

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 43

Table 5.1: Percentage of respondents who indicated that accessing lessons learnt is ‘easy’ and
‘very easy’ from various sources

Source Easy Very Easy
Development projects 24% 7%

People 21% 23%
Websites 18% 3%

Books 32% 0%
Technical reports 16% 0%

Peer-reviewed scietific literature 25% 0%

Around 85% of the respondents indicated that they will use RE LL in their projects if they were

made readily available. These numbers indicate that accessing lessons learnt from the different

sources is difficult and that LL would be used if made readily available. Therefore, this study

aims to better understand where this difficulty is stemming from and provide a concrete step

towards solving it by making lessons learnt readily available. Although the survey responses

indicate that accessing lessons learnt is difficult from most sources, we have restricted our study

to understanding the state of lessons learnt in the scientific literature due to time constraints.

Thus, our overall research goal is:

“To determine the current state of lessons learnt in RE and to make these lessons learnt acces-

sible and readily available to practitioners.”

While the process of eliciting the lessons and populating the lesson maps will make these

lessons accessible and readily available to practitioners, to understand the current state of

lessons learnt in RE (both literature and practice), we have divided our research questions

into two categories: (i) the first targets the RE literature and (ii) the second targets RE industry.

The following research questions address the state of lessons learnt in the RE literature:

RQ 1.1 What are the elicited lessons learnt from the RE literature?

RQ 1.2 How many lessons learnt are in the RE literature?

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 44

RQ 1.3 How are the lessons learnt expressed in the RE literature (explicitly or implicitly)?

RQ 1.4 Where (in which area of RE) are the lessons from the RE literature concentrated?

RQ 1.5 What is the quality of the lessons learnt elicited from the RE literature?

In order to expand the sources from which we elicited lessons by including RE practice as

well as the RE literature, we have set a number of research questions for this area:

RQ 2.1 What are there lessons learnt from industry/practice?

RQ 2.2 Where (which area of RE) are the lessons from practice concentrated?

RQ 2.3 What is the quality of the lessons learnt elicited from industry/practice?

RQ 2.4 How do the lessons learnt from industry compare with the lessons learnt from litera-

ture?

It is, however, important to note that the study addressing these questions is in its initial stages

and the results we have received to date is small (details in section 5.2.2).

5.2 Research Methods

In order to investigate the aforementioned research questions, we conducted two knowledge-

seeking empirical studies: (i) a systematic literature review (SLR) [Kitchenham, 2004] to elicit

lessons from the literature and (ii) a survey [Yin, 2003] to elicit lessons from practice. In this

section, we describe the research procedures in detail for the SLR (section 5.2.1) and survey

(section 5.2.2).

5.2.1 Systematic Literature Review

According to Kitchenham, a systematic literature review is “a means of identifying, evaluating

and interpreting all available research relevant to a particular research question, or topic area,

or phenomenon of interest. Individual studies contributing to a systematic review are called

primary studies; a systematic review is a form of secondary study” [Kitchenham, 2004]. The

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 45

systematic literature review process includes three phases: (i) plan review, (ii) conduct review,

and (iii) document review. Each phase embodies several stages (see Figure 5.1). The SLR we

conducted followed the original guidelines provided by Kitchenham [Kitchenham, 2004].

Figure 5.1: Systematic Literature Review Process

Research Questions

The research questions that the review is intended to answer have been discussed in section 5.1,

which we will reiterate here: (i) What are the elicited lessons learnt from the RE literature?, (ii)

How many lessons learnt are in the RE literature?, (iii) How are the lessons learnt expressed in

the RE literature (explicitly or implicitly)?, (iv) Where (in which area of RE) are the lessons

from the RE literature concentrated?, and (v) What is the quality of the lessons learnt elicited

from the RE literature?

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 46

Review Protocol

The components of a protocol include all the elements of the review plus some additional plan-

ning information [Kitchenham, 2004]. The elements of the review, which will be discussed in

detail in subsequent sections, include: research questions, search process (e.g., search terms,

resources to be searched such as databases, journals and conference proceedings), study inclu-

sion and exclusion criteria, quality assessment to assess the studies, data collection strategy,

and data analysis/synthesis strategies.

Search Process

The search process was a manual search of RE-related conferences, journals, and workshop

papers for years 2011 and 2012. A two-year time period was selected due to time and effort

constraints; we intend to extend the years reviewed in our future work. Table 5.2 includes the

names of all the selected journals, conferences and workshops. These journals, conferences

and workshops were selected because they produce the major RE-related publications. The

publications were accessed and downloaded via Western University’s databases.

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 47

Table 5.2: Selected journals, conference and workshop proceedings.

Title Acronym
Requirements Engineering Journal RE
Empirical Software Engineering Journal EMSE
IEEE Transactions on Software Engineering TSE
Proceedings IEEE International Requirements Engineering Conference IEEE RE
Proceedings International Conference on Software Engineering ICSE
Proceedings International Working Conference on Requirements Engineering:
Foundation for Software Quality REFSQ

Proceedings IEEE International Workshop on
Empirical Requirements Engineering EmpiRE

Proceedings IEEE International Workshop on
Model-Driven Requirements Engineering MoDRE

Proceedings IEEE International Workshop on
Requirements Engineering Education and Training REET

Proceedings IEEE International Workshop on
Requirements Engineering and Law RELAW

Proceedings IEEE International Workshop on Requirements Patterns RePa
Proceedings IEEE International Workshop on
Requirements Engineering for Systems, Services, and Systems-of-Systems RESS

Proceedings IEEE International Workshop on
the Twin Peaks of Requirements and Architecture TwinPeaks

Proceedings International Workshop on Managing Requirements Knowledge MaRK
Proceedings International Workshop on
Multimedia and Enjoyable Requirements Engineering Mere

Proceedings Workshop Requirements@run.time RE@Runtime
Proceedings International Workshop on
Requirements Engineering for Social Computing RESC

Proceedings Workshop on Requirements Engineering for E-Voting Systems REVOTE
Proceedings Requirements Engineering Efficiency Workshop REEW
Proceedings Workshop on Empirical Research
in Requirements Engineering: Challenges and Solutions EPICAL

Proceedings Requirements Engineering for Sustainable Systems RE4SuSy
Proceedings Creativity in Requirements Engineering CreaRE
Proceedings Requirements Prioritization for
Customer Oriented Software Development RePriCo

All publications were reviewed by the author for potentially relevant material.

Inclusion and Exclusion Criteria

Applying the inclusion/exclusion criteria in our study was done in two stages. In the first stage,

all publications were reviewed for potential relevance. Potentially relevant here means that a

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 48

publication may or may not contain a RE lesson(s), implicit or explicit. All articles from Jan-

uary 2011 to December 2012 that contained RE-related content were included and any articles

on topics outside RE were excluded. In this case, all articles in each journal and conference

and workshop proceedings were considered relevant except for ICSE proceedings and the Em-

pirical Software Engineering journal where only publications with RE-related content were

considered relevant.

In the second stage, articles were reviewed for lessons learnt. A lesson(s) learnt was elicited if

it satisfied the following criteria:

• One of the literature lesson definitions discussed in Chapter 3 applied.

• There are actionable (either negative or positive), results from an empirical study (con-

trolled experiment, experiment, exploratory experiment, quasi experiment, case study,

confirmatory case study, retrospective case study analysis, pilot case study, explanatory

case study, survey, workshop, questionnaire, pilot study, systematic review, qualitative

study, end-user study, document analysis study), industrial experience, illustrative exam-

ple, evaluating example, field assessment.

Quality Assessment

The difficulty of assessing the quality of the selected studies has been identified by Kitchen-

ham [Kitchenham, 2004]. In our study, because we are eliciting lessons according to a set of

criteria and filling in attributes, the quality assessment of the publications themselves has not

been given much attention. We, however, have dedicated a research question for the quality

assessment of the lessons instead of the selected studies as we will see in detail in Chapter 6.

Lessons are assessed for their quality based on their attributes values.

Data Collection

The data extracted from each study that contained a lesson learnt were:

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 49

• Lesson ID: A unique ID for each lesson in the format: LLXXX YY where XXX is a

sequence number starting at 001 and YY is the year number (11 or 12).

• Citation: A key to reference the full reference from a local bibliography tool (BibDesk),

which will be included as a citation in this document and added accordingly to the list of

references.

• Lesson attribute values: All the information needed to fill in the following lesson at-

tributes (see Chapters 3 and 4 for details): Journal, Conference, Workshop, Year, Lesson,

Source, Rationale, Impact, Target object, Type, Expression, Application domain, Project

size, RE practice, RE Phase, Software Process, Project date, Recording date, Organisa-

tion name, Repeatability

Data Analysis

The data was recorded as:

• Elicited lessons learnt from the reviewed literature (addressing RQ 1.1).

• The total number of papers, relevant papers, and elicited lessons from each source for

each year. (addressing RQ 1.2).

• The number of explicit and implicit lessons (addressing RQ 1.3).

• The number of lessons for each source, target object, type, application domain, RE prac-

tice, RE phase, and software process (addressing RQ 1.4)

• The quality of each lesson (addressing RQ 1.5).

Review Protocol Validation

Because the review protocol is a critical element of the SLR, researchers must seek to get the

protocol reviewed by experts. Graduate students typically seek feedback and criticisms from

their supervisors. In our case, the review protocol was validated by the author’s supervisor

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 50

before beginning to conduct the SLR. All the elements of the protocol presented above have

been reviewed and validated by the supervisor. Further validation will be conducted as part of

our future work.

5.2.2 Survey

In section 5.1, we mentioned that part of our overall research goal is to understand the state of

lessons learnt in RE. In section 5.2.1, we described in detail the SLR we conducted to address

the first set of research questions (Section 5.1) regarding lessons learnt in the RE literature.

In order to answer the next set of research questions, we have designed and begun conducting

another empirical study (a survey) to investigate lessons learnt in practice. Although the study

is still in its initial stages and the results are few, we have decided to document the study and

initial results as it will be part of our ongoing work.

A survey can be used as research method if the research questions are in the following for-

mat: who, what, where, how many, how much? [Yin, 2003]. In addition, lessons learnt from

diverse sources by diverse people would likely have less organisational and local-culture bias

and so the collective set of lessons gathered would have the diversity of lessons and contexts

built it which, as a collection, may be more applicable (or of Interest) in other contexts. A sur-

vey, therefore, may aid in gathering lessons from more diverse sources as opposed to interview

from a few sources. For these reasons, we chose to conduct a survey as a first step towards

addressing the research questions related to RE lessons in practice.

The inclusion and exclusion criteria [Kitchenham et al., 2002] of a survey specify the sub-

jects who will and will not participate in the survey. Because the survey was accepted to the

empirical track at the International Working Conference on Requirements Engineering: Foun-

dation for Software Quality (REFSQ’13) in Essen, Germany, all RE participants were invited to

participate. They had varying degrees of experience. Subjects with experience outside the RE

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 51

domain were excluded. The following sections describe the instrument design, data collection

and analysis, and participants in detail.

Instrument Design

• The survey was created and conducted via a web-based survey tool (Survey Gizmo).

• The survey consisted of both open-ended and close-ended questions.

• The first page of the survey included the survey introduction, which consisted of facts

from a previous study we conducted [Noorwali and Madhavji, 2012] to motivate partic-

ipants to take the survey. The introduction also included the purpose and a note that all

responses are to remain anonymous unless the authors included their contact informa-

tion. Estimated completion time also noted. Finally, the names and contact information

of the survey administrators were included.

• The second page consisted of questions to gather the following participant demographic

information:

– Type of organisation that the participant has substantially worked in,

– The key roles the participant played in his/her career, and

– Number of years of work experience.

• The third page included the questions to gather the lesson along with the attributes dis-

cussed in Chapters 3 and 4.

• At the end of the third page, the participants were asked to provide their email address if

they would like to receive the results of the survey. In addition, they were asked whether

they would be willing to be contacted for clarification purposes. Finally, a question was

added to ask the participants whether they would like to add another lesson. If yes, they

were directed to another template; otherwise, the survey was complete.

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 52

• Ambiguous terminology was explained for each question to avoid confusion.

• The participants were provided with a URL to access the survey [Noorwali and Mad-

havji, 2013b] (Please see Appendix B for the complete survey).

Data Collection

The survey URL was publicised and distributed at the International Working Conference on

Requirements Engineering: Foundation for Software Quality (REFSQ’13) to all conference

participants. The average number of attendees at REFSQ are between 120-140. We received

seven completed responses. Nine participants started the survey without completing it. The

responses were stored in the database of the online survey tool we used.

Data Analysis

Due to the qualitative nature of the gathered data, a qualitative analysis (thematic coding tech-

nique) [Thomas and Harden, 2008] was conducted. Data was analysed to address the research

questions. To address RQ 2.1, the gathered lessons were documented according to the RE

Lesson representation discussed in Chapter 4. The number of lessons for each source, target

object, type, application domain, RE practice, RE phase, and software process were counted

to address RQ 2.2. A quality analysis was performed (Chapter 6) to address RQ 2.3. Finally,

a qualitative comparison was performed to compare between the lesson from literature and

practice (RQ 2.4).

Participants

Due to the small number of responses we received thus far, the participants are likely not

representative of the larger RE community. Nevertheless, we will describe the participants’

backgrounds, organisations and geographic distribution in this section because a survey’s par-

ticipants play an important role in the design of an empirical study.

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 53

Participant’s Backgrounds

Despite the small number of respondents, they have held a number of different positions

such as managers, requirements analyst/engineers, business analysts, developers, architects,

researchers, consultants, and teachers. However, 100% of the participants held a researcher

position. Since the question addressing the participant’s key role played in his/her career al-

lowed multiple answers, the total percentage exceeded 100%. Table 5.2 includes the details of

the percentage distribution of the key roles played during the career of the participants.

Table 5.3: Percentage distribution of the key roles played during the career of the participants.

Role Percentage
Manager 14.2%

Requirements Analysts/Engineer 71.4%
Business Analyst 28.6%

Developer 28.6%
Architect 28.6%

Researcher 100%
Consultant 85.7%

Teacher 42.3%
Other 14.3%

The participant’s work experience ranged from 1 to 16+ years. The years of experience were

divided into five sections, none being the the minimum number of years of work experience.

However, none of the participants had zero year experience. Table 5.3 for details.

Table 5.4: Percentage distribution of years of work experience of the participants.

Number of Years Percentage
None 0.0%

1-4 years 14.3%
5-10 years 14.36%

11-15 0.0%
16+ 71.4%

Participants’ Organisations

Because we are concerned with software process and project size of the lesson learnt itself

rather than the respondents, we did not include a question in the survey that addresses these

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 54

issues. However, this information was part of the lesson template the participants were asked

to complete.

Participants’ Geographic Distribution

In our survey, we have not asked participants to indicate their location as it is not relevant to

our study. The context attributes which they were asked to fill provided us with all the lesson-

related information we need.

5.3 Threats to Validity

This section discusses the threats to validity to our empirical studies and explains how they

were addressed. Sections 5.3.1 and 5.3.2 discuss the types of validity for the systematic litera-

ture review and survey respectively. The study limitations, however, are discussed in chapter 9

(section 9.1).

5.3.1 Systematic Literature Review

This section discusses the threats to the internal, external, construct, and conclusion validities

of the systematic literature review. Methods to deal with these threats are also discussed.

Internal Validity

Internal validity is concerned with the extent to which a causal relationship is warranted [Rune-

son and Host, 2009]. Therefore, it is only relevant in studies that try to establish a cause-effect

relationship. Since our systematic literature review is not concerned with establishing causal

relationships, this threat is not applicable in our study.

External Validity

External validity refers to the extent to which a set of results of a study are generalisable

to a wider population of persons, settings, and time [Creswell, 2008]. In our case, external

validity can be threatened if the lessons are not generalised enough for use in other contexts.

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 55

These threats can be mitigated to some degree by obtaining feedback from researchers and

practitioners to validate the maps and elicited lessons and by identifying and analysing the

context of each lesson. In addition, the documentation of all context attributes (e.g., project

size, application domain, project date) of a lesson can help guide a user to decide whether it is

applicable to a certain situation, project, or time.

Construct Validity

Construct validity refers to the degree to which the measured constructs are actually measured

[Runeson and Host, 2009]. This is a threat to our study because the systematic literature review

to elicit lessons was carried out by one researcher. Therefore, the researcher’s interpretation of

a ‘lesson’ may be different than that of another researcher. To deal with this threat, we have

clearly identified and took into consideration the different definitions of a lesson, which were

validated by a senior researcher and by four reviewers at REFSQ’13.

Conclusion Validity

Conclusion validity is concerned with whether the conclusions reached at the end of the study

are reasonable or not [Johnson and Christensen, 2007]. This is a threat to our study as the

conclusions we draw from the results is based on data from a two-year window only. Although

some recurring patterns have been noticed throughout both years, two years may not be enough

to generate concrete conclusions. We, therefore, present some emerging patterns (see Chapter

6), which we intend to validate or disprove by eliciting more lessons from literature coming

from more years.

5.3.2 Survey

As in the previous section, this section discusses the threats to the internal, external, construct,

and conclusion validities of the survey. It is important to note again that this study is still in its

initial stages. Therefore, methods to deal with the threats to the different validities have not yet

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 56

been pursued. However, we discuss how we intend to deal with these threats in our ongoing

work.

Internal Validity

Internal validity is concerned with the extent to which a causal relationship is warranted [Rune-

son and Host, 2009]. Therefore, it is only relevant in studies that try to establish a cause-effect

relationship. Since our survey aims to gather data from practitioners and is not concerned with

establishing causal relationships, this threat is not applicable in this study.

External Validity

The same threats to external validity that applied to the systematic literature review’s results

apply to the survey’s results. The gathered lessons may not be generalisable to the general

population. We intend to mitigate these threats by obtaining expert feedback on the lessons.

The lesson’s context attributes that were included in the survey are also a method to deal with

this threat as the context is described in detail. In addition to the general external validity, it is

necessary in the case of the survey to discuss three additional types of external validity threats

that may threaten the study: population validity, ecological validity and temporal validity.

Population validity refers to the extent to which the sample is representative of the popula-

tion as a whole. This threat exists in our study since the survey was conducted at REFSQ’13

only. This limits the variety of subjects who have participated in the survey because REFSQ

may attract only a certain portion of the RE community. In addition, the number of responses

we have received thus far is very small. To deal with this threat, we plan to distribute the sur-

vey to a larger population as part of our ongoing work (e.g. RE conference, via email lists, etc.).

Ecological validity is concerned with the degree to which the study setting represents the

real-world situation (i.e. laboratory setting versus real-world setting). Since a survey is not

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 57

conducted in a specific case, as the case with an experiment or case study, this threat is not

relevant to the survey.

Temporal validity is the ability to generalise the results of a study over time. Whether the

elicited lessons are generalisable across time or not is not known. This may be measured

when the concept of lessons learnt has been promoted and has significantly matured in the RE

community.

Construct Validity

Construct validity is critical to the overall validity of the survey. Two types of construct valid-

ity are relevant in this case: content validity [Salkind, 2007] and face validity [Bornstein et al.,

2004].

Content validity refers to the degree of which the research instrument accurately represents

the specific intended domain of content. In our case, we are concerned with the accurate rep-

resentation of a lesson learnt. To deal with this threat, we have included the definitions of a

lesson from reputable dictionaries.

Face validity measures how representative a research project is ‘at face value,’ and whether

it appears to be a good project. In our case, the threat to face validity was mitigated by sub-

mitting the survey to the Empirical Track at REFSQ’13, which was reviewed by two reviewers

before being accepted for distribution.

Conclusion Validity

The reasonableness of the conclusions drawn at the end of the study is threatened due to the

small number of responses we have received. We plan to mitigate this threat by increasing

the number of responses to a statistically significant number and validating the conclusions via

www.manaraa.com

Chapter 5. The Empirical Study on RE Lessons 58

expert feedback and peer-reviews. While there is uncertainty as to the results more responses

will yield, this is something we intend to evaluate.

www.manaraa.com

Chapter 6: Results of the Empirical Study: Elicited Lessons

In this chapter, we present the results of the empirical study we discussed in Chapter 5 (system-

atic literature review and survey). Section 6.1 includes ten elicited lessons from the literature

of years 2011 and 2012 (five for each year) from the systematic literature review we conducted.

Although we elicited a total of 209 lessons from the literature, we list only 20 of them here,

due to space constraints (for the complete list of lessons, please see Appendix C). Section 6.2

presents the lessons we have thus received from the survey we conducted at REFSQ’13. Fi-

nally, Section 6.3 summarises and discusses the results with regard to the research questions

(Section 5.1).

It is important to note that, although the elicited lessons followed the definitions and attributes

discussed in chapters 3 and 4, and were validated by a senior researcher, they have yet to be

validated for usefulness, applicability, and completeness. Therefore, the results of the study

should not be generalised before conducting further validation processes in subsequent studies.

In addition, due to researcher bias, there may have been some overlooked lessons during the

elicitation process.

6.1 RE Lessons from Literature

Table 6.1 shows the results of the systematic literature review. The first column identifies the

year; the second column includes the names of the sources that were reviewed; the third column

includes the total number of papers reviewed and considered relevant from each source; the

fourth column includes the total number of papers selected to be reviewed for lessons learnt;

and finally, the fifth column includes the total number of elicited lessons.

59

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 60

Table 6.1: Sources searched for years 2011 and 2012

Year Source Total # of
Reviewed Papers

Total # of
Selected Papers

Total # of
Elicited Lessons

2011

RE 19 19 11
EMSE 25 2 2
TSE 48 3 2
IEEE RE 35 35 28
Workshops at IEEE RE 101 101 32
REFSQ 20 20 18
Workshops at REFSQ 13 13 5
ICSE 128 6 3
Total 389 199 101

2012

RE 16 16 12
EMSE 24 3 7
TSE 82 1 0
IEEE RE 35 35 35
Workshops at IEEE RE 54 54 36
REFSQ 27 27 10
Workshops at REFSQ 21 21 7
ICSE 87 5 1
Total 346 162 108

Recall from Section 5.1, the first research question for the systematic literature review was:

RQ 1.1 What are the elicited lessons learnt from the RE literature?

To answer the question, we present, for illustration purposes, in sections 6.1.1 and 6.1.2 a

randomly selected sample of elicited lessons (six lessons) from the literature of years 2011

(three lessons) and 2012 (three lessons), respectively. The complete list of lessons are in Ap-

pendix C.

For year 2011, the sample lessons are from the RE journal, IEEE RE conference, and RES4

workshop. Likewise, the lessons for year 2012 are from IEEE RE conference, RELAW work-

shop, and RE journal. The lessons deal with RE phases such as analysis, elicitation, validation

and others. They come from application domains such as aviation security, banking, and others.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 61

6.1.1 Lessons from Year 2011

Lesson ID: LL040 11 [Asnar et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use the Goal-Risk framework for modeling and reasoning about risk during require-

ments analysis extending the Tropos goal modeling framework.

Source: Case study

Rationale: “Risk analysis is traditionally considered a critical activity for the whole software

systems lifecycle. Risks are identified by considering technical aspects (e.g., failures of the

system, unavailability of services, etc.) and handled by suitable countermeasures through a

refined design. This, however, introduces the problem of reconsidering system requirements.”

[Asnar et al., 2011]

Impact: “Positive experiences in communicating GR models to analysts and domain experts.

This is an important strength for any requirements analysis technique because it empowers

domain experts to under- stand and critique proposed models. Moreover, the learning process

for experts to understand and use a GR model takes relatively short period (approximately 23

months). The GR framework supports risk analysis during the very early phases of software

development. Consequently, it reduces the risk of requirements revision, and consequently the

cost of development. In comparison with KAOS, this framework allows analysts to perform

qualitative and quantitative assessment though KAOS provides richer formal semantics using

Linear Temporal Logic. Moreover, in comparison with DDP and CORAS the GR framework

is more expressive in capturing stakeholders intentions. At last, the GR framework is the only

framework that deals with risk and opportunity, since some risks appear because the stakehold-

ers decide to pursue an opportunity. With this feature, one can perform trade-off analysis to

decide whether one opportunity is worth to pursue or not.” [Asnar et al., 2011]

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 62

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Banking

Project size: N/A

RE Practice: Using a framework

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL067 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying insights from agile development to requirements engineering, the key

concepts from the agile world such as user stories or product owners must be mapped intelli-

gently to appropriate concepts in RE, not copied.

Source: Case study

Rationale: “While Requirements Engineering textbooks state that a requirements specification

must be complete, in real-life projects we are always starting too late, with too few resources,

so we cant do everything. The software development community has solved a similar problem

(not having enough resources to implement everything that was asked for) by introducing agile

development methods, which offer ways of segmenting the overall project, and choosing which

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 63

parts to allocate resources to.” [Waldmann, 2011]

Impact: “Our case study confirmed that a flexible requirements engineer ing process inspired

by agile development methods can de- liver results that provide business value, even with severe

resource constraints.Our case study also demonstrated that agile requirements engineering ac-

tivities can indeed feed into development project that follows a classical V-model approach, by

making a clear distinction between incremental delivery of requirements vs. non-incremental

delivery of implementation. The implementation part also included hardware development

subprojects, and our case study demonstrates the feasibility of agile requirements engineering

activities preceding development activities which, for technical reasons, cannot deliver in mul-

tiple releases.” [Waldmann, 2011]

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: “The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.” [Waldmann, 2011]

RE Practice: N/A

RE Phase: Elicitation, analysis, specification, validation

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial case study results

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 64

Lesson ID: LL099 11 [Bahrs and Nguyen, 2011]

Journal: N/A

Conference: N/A

Workshop:RES4

Year: 2011

Lesson: Use the Smarter architecture & engineering (SmarterAE) approach for requirements

management. It is a way of rethinking the requirements, architecture and systems engineering

life cycles on SOA, Modernization and Transformation projects.

Source: Industrial experience

Rationale: “Many project struggle with the so called requirements hand off. This is the situa-

tion where requirements are documented in text and handed to a team for implementation. In

the majority of projects, the developers struggle with semantics, clarity and on time delivery.

This occurs on projects of various time durations and complexity from small embedded sys-

tems to large geographically dispersed systems of systems.” [Bahrs and Nguyen, 2011]

Impact: “Reduction in costs by 33%. Reduction in time by 40%.Successful partitioning of

teams across time zones and organizations. Successful delivery of Claims Processing and Bor-

der Management applications in 30 days, from requirement to execution. Predicted savings

of 15, 25 and 40% over three years. 60% of projects producing the correct assets. Business

process assets more difficult to produced than all other business architecture assets. Asset types

and standards continuing to change.” [Bahrs and Nguyen, 2011]

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Business Process Management (BPM) project. SOA project. Legacy

Modernization project. Transaction Processing project. Business Agility project. Model-

driven Architecture (MDA) project. Model-driven Architecture (MDA) project. Real-time

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 65

mission critical systems project. Product development project

Project size: “SmarterAE is typically valuable in large complex enterprise-wide projects.”

[Bahrs and Nguyen, 2011]

RE Practice: N/A

RE Phase: Elicitation, managing

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: IBM

Repeatability: Numerous projects and customers are using the SmarterAE approach over the

last two years.

6.1.2 Lessons from Year 2012

Lesson ID: LL007 12 [Yi et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Yi’s et al. approach to mine cross-tree binary constraints in the construction of

feature models.

Source: Evaluating experiment

Rationale: “Identifying features and then building a feature tree takes a lot of effort, and many

semi-automated approaches have been proposed to help the situation. However, finding cross-

tree constraints is often more challenging which still lacks the help of automation.” [Yi et al.,

2012]

Impact: “The approach successfully finds binary constraints at a high recall (near 100% in

most cases). The precision is unstable and dependent on the test feature models. In most cases

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 66

the requires constraints are better mined than the excludes constraints; a possible reason is that

the rationale behind excludes is often beyond feature descriptions. Continuous feedback from

human analysts benefits the mining process, especially for mining excludes constraints. There-

fore in practice, our classifier should be used in an interactive way, that is, human analysts

check only a few constraint candidates after each turn of mining, and then the classifier repeats

the train-optimize-test process again.” [Yi et al., 2012]

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Healthcare in the US

Project size: The weather station feature model: 22 features, 196 feature pairs, 6 requires, and

5 excludes. Graph Product Line feature model: 15 features, 91 feature pairs, 8 requires, and 5

excludes

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: S.P.L.O.T. repository

Repeatability: First time experimental results

Lesson ID: LL053 12 [Braun et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Natural Language before Performance Model does not impact the quality of regula-

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 67

tions or only very late in the regulatory process.

Source: Industrial experience

Rationale: “The status quo is that performance modeling is not routinely included in the reg-

ulatory process, which may lead to lack of clarity, inconsistencies, and difficulties measuring

and hence assessing compliance.” [Braun et al., 2012]

Impact: “There is no or little improvement in terms of inconsistencies in the regulations, the

understandability of the regulations, and the measurability of desired regulation outcomes. It

is likely that some measures will be difficult to quantify, leading to problems for effectively

enforcing the regulations.” [Braun et al., 2012]

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Aviation Security

Project size: “Transport Canada is engaged in a multi-year modernization process to review

and renew its Aviation Security regulations.” [Braun et al., 2012]

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time industrial experience

Lesson ID: LL108 12 [Svensson et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 68

Year: 2012

Lesson: Use the QUality PERformance (QUPER) model with estimations of benefit and cost

of quality targets in relation to market expectations as a basis for the architecting of quality

requirements.

Source: Case study

Rationale: “Quality requirements play a critical role in driving architectural design and are an

important issue in software development. Therefore, quality requirements need to be consid-

ered, specified, and quantified early during system analysis and not later in the development

phase in an ad-hoc fashion.” [Svensson et al., 2012]

Impact: “In general, QUPER does not only help in creating a more aligned view of quality

requirements, but also to use one method to measure all quality requirements. All subjects

confirmed that QUPER would support and coordinate the early decision-making process, e.g.,

release planning. The QUPER model is aimed to facilitate the elicitation, specification, quan-

tification, and prioritization of QR.”

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: “Electronic payment-processing: payment terminals, transaction pro-

cessing, and development of saving- and customer-card systems.”

Project size: “Company employs more than 250 employees, has more than 120,000 customers

and business partners.” [Svensson et al., 2012]

RE Practice: N/A

RE Phase: Elicitation, Specification, Prioritization

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 69

Repeatability: Confirm previous results from the mobile handset

6.2 RE Lessons from Practice

Recall from Section 5.1, the first research question for the survey was:

RQ 2.1 What are the elicited lessons learnt from industry/practice?

Results:

Lesson ID: LL109 12

Type of organization you have worked in substantially (please choose one or more): Aca-

demic institution

Key roles played in your career (please choose one or more): Requirements analyst/Engineer,

Business analyst, Developer, Architect, Researcher, Consultant

Number of years of work experience: 16+

Year: 2012

Lesson: The most important thing I have learned about RE is to allow as much time as is

needed

Source: Industrial experience

Rationale: Because it’s pervasive

Impact: Spend enough time and the quality of the product goes up

Target Object: Process, policy, Other: project management

Type: Negative

Application Domain: Banking

Project size: 5 person-year

RE Practice: All

RE Phase: Elicitation, Analysis, Prioritization, Negotiation, Specification, Modeling, Valida-

tion

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 70

Software Process: Waterfall

Repeatability: YES.. anytime not enough time is given for RE, the resulting requirements

specs are deficient, leading to a poor product

Lesson ID: LL110 12

Type of organization you have worked in substantially (please choose one or more): Aca-

demic institution

Key roles played in your career (please choose one or more): Requirements analyst/Engineer,

Business analyst, Researcher, Consultant

Number of years of work experience: 5-10 years

Year: 2012

Lesson: 1. Requirements are in most cases not just ”The system shall” statements. Good

requirements rather describe reference objects that are to be supported or even implemented

by a system (e.g., use cases, users, business processes, processed data, screens, etc.). In par-

ticular, thinking in such reference objects allow people to know at least partially a) what to

ask, b) in which order, c) by whom and d) when finished. We learned that using reference

objects as a mental model is much better to organize RE processes than trying to distinguish

between problem and solution space, between what and how or between business (usage) re-

quirements and technical requirements as there are too much overlaps in practice. 2. Consider

different perspectives. Requirements Engineering is no end in itself. Requirements Engineer-

ing must satisfy the consumers of the requirements (e.g., the developers) and the producers of

the requirements (e.g., the customers and users). Requirements are stated because people feel

problems to be solved. Thus, requirements should not limit themselves on software properties

and must range from a very high and software-independent level (e.g., business analysis) down

to software implementation. 3. The requirements on requirements must be better considered.

Many software requirements are useless because the requirements of requirements consumers

on requirements, e.g., regarding content, structure, notation, point of delivery etc. are not clear.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 71

An RE Process must elaborate the requirements of the customers and users, of course, but the

process itself must fulfill the requirements of the developers! 4. Consider power and politics.

Without officially involving important decision makers at the very beginning, much RE effort

may be wasted, because these decision makers can skip every requirement at a very later point

in time, otherwise.

Source: Industrial experience

Rationale: Because many organizations (of different size and different domain) are challenged

by them

Impact: When following these lessons we experienced better requirements, higher employee

satisfaction in the project team and higher efficiency

Target Object: Technique/method, process, policy

Type: Negative

Application Domain: different ones (see above)

Project size: different ones (normally medium-size projects)

RE Practice: N/A

RE Phase: Elicitation, Analysis, Prioritization, Specification

Software Process: Waterfall, Iterative, Spiral, Code-and-Fix

Repeatability: Lesson 1 experienced in almost every RE teaching and transfer project inde-

pendent of the domain. People in practice have huge problems to know what to describe, by

whom in which degree of detail. By thinking in reference objects, these problems could always

be eliminated. Lesson 2 experienced especially in projects where other parties (e.g. business

consultants or implementation companies) were involved. Without considering RE as a holistic

design process, redundancies, overlaps and conflicts occur in such settings, because every party

is doing its own RE in an isolated scope without having clear interfaces. Lesson 3 experienced

in several consulting projects in which we helped organization to improve their RE processes.

Understanding customer needs is sometimes less problematic than producing specifications

with which developers can work without additional explanations. So many misconceptions

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 72

about RE are often caused by the fact that requirements specifications are not experienced as a

help for practitioners. Lessons 4 experienced in almost every project with the German govern-

ment. Many people are involved to discuss requirements and solutions and at the end millions

euro of tax are spent but some ”leader” decides not to proceed.

Lesson ID: LL111 12

Type of organization you have worked in substantially (please choose one or more): Aca-

demic institution

Key roles played in your career (please choose one or more): Researcher, Teacher, Other:

I have participated in some projects in industry as RE consultant and I have directed a lot of

student projects where RE was present

Number of years of work experience: 16+ years

Year: 2012

Lesson: - It is important the organization and writing of the requirements in order there are not

misunderstandings among the customer and developer. - It is important that they are enough

complete and detailed, in order the developer can not skip to implement some aspect of the

system. - In systems with a lot of different user roles and IT previous knowledge it is impos-

sible to satisfy the needs of all future users. It is the customer organization who has to finally

decide when there are contradictory requirements, and do some activities to teach the users of

the new system to get used to it and to the changes in processes that it implies.

Source: Other

Rationale: N/A

Impact: N/A

Target Object: Technique/method, process, policy

Type: Negative

Application Domain: Curriculum Management, other diverse domains...

Project size: 3000 users, other diverse sizes.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 73

RE Practice: N/A

RE Phase: Elicitation, Specification

Software Process: Agile, Waterfall, Iterative, Spiral, Code-and-Fix, Rapid prototyping

Repeatability: I think they are both repeatable in all contexts.

Lesson ID: LL112 12

Type of organization you have worked in substantially (please choose one or more): Aca-

demic institution

Key roles played in your career (please choose one or more): Requirements Analyst/Engineer,

Researcher, Consultant

Number of years of work experience: 1-4 years

Year: 2012

Lesson: Developers are not aware (or they do not want to be aware) of big requirements doc-

uments and specifications. They usually do not read them, or just overlook at them, without

taking care of the details.

Source: Industrial experience

Rationale: It is important in distributed systems, in the way you communicate with your team,

to take into account what documentation you produce while specifying the system.

Impact: The problem of a not good understanding of requirements specification document is

that developers do something similar to what it is specified, but not what it is specified, affect-

ing process efficiency and project costs.

Target Object: Technique/method

Type: Negative

Application Domain: Social websites

Project size: 5 person-month (during 1 year)

RE Practice: N/A

RE Phase: Elicitation, Analysis, Specification, Documentation

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 74

Software Process: Agile, Spiral, Code-and-Fix,

Repeatability: Yes, it is. I think it actually applies in any project, but specially in those ones

that work in a distributed way (project manager and business analyst with customers in one

side, development and testing team in another side, and both sides cannot meet in the same

place).

Lesson ID: LL113 12

Type of organization you have worked in substantially (please choose one or more): Aca-

demic institution

Key roles played in your career (please choose one or more): Researcher, Consultant, Teacher

Number of years of work experience: 16+ years

Year: 2012

Lesson: Commitment of the managers of the company is mandatory for the success of require-

ment elicitation.

Source: Industrial experience

Rationale: Very important

Impact: Failure of the project

Target Object: Process, other: communication

Type: Negative

Application Domain: no-profit, elearning

Project size: 5 person-month (during 1 year)

RE Practice: N/A

RE Phase: Elicitation, Negotiation

Software Process: Other: all

Repeatability: Yes, Any context

Lesson ID: LL114 12

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 75

Type of organization you have worked in substantially (please choose one or more): Industry,

Academic institution

Key roles played in your career (please choose one or more): Manager, Requirements Ana-

lyst/Engineer, Researcher, Consultant

Number of years of work experience: 16+ years

Year: 2012

Lesson: Early prototyping is essential. A screen shot sais more than 1000 words and is much

less ambiguous. A lot of misunderstandings can be avoided by early prototyping. Prototyping

can mean to use powerpoint prototypes of the user interface, or to implement / customize a

solution. With 20% of the effort, you can visualize 80% of the functionality.

Source: Industrial experience

Rationale: The discussion of the prototype always helped to discover previous midunderstand-

ings which might have caused unnecessary cost for the implementing team. And the prototype

gave the customers a better feeling: the feeling to understand, the feeling to be understood, the

feeling to be able to influence the way the software will look.

Impact: Failure of the project

Target Object: Technique/method, Tool

Type: Positive

Application Domain: Development of CRM systems and CASE tools

Project size: several projects, of 2 - 10 persons

RE Practice: N/A

RE Phase: Elicitation, Analysis, Prioritisation, Specification, Documentation

Software Process: Waterfall, Iterative

Repeatability: Product quality is higher in terms of user satisfaction. The development process

will be more efficient and project cost lower. There is only on problem with software pro-

totypes against graphical prototypes: As you can implement a first running prototype within

few days, the customer does not understand why the rest of the project (setting up databases,

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 76

developing technical interfaces, reports, etc, and quality assurance) will take several months.

For customers/ users the user interface is what they pay for. They told me that the need for

database and technical interfaces is not their need but ours (the development teams). So, they

even discussed whether they must pay for the database or we must. I could convince them

that in fact THEY need the database. The prototype clearly showed what happened without a

database behind: Data simply get lost.

Lesson ID: LL115 12

Type of organization you have worked in substantially (please choose one or more): Industry,

Academic institution

Key roles played in your career (please choose one or more): Requirements Analyst/Engineer,

Developer, Architect, Researcher, Consultant, Teacher

Number of years of work experience: 16+ years

Year: 2012

Lesson: Even if you do not do requirements engineering, merely by writing code, you make

requirement decisions. So there is no avoiding determining requirements.

Source: Industrial experience

Rationale: It shows how ridiculous skipping or abbreviating RE is.

Impact: If you don’t do RE, then requirement decisions are made by the programmers, each

acting on his or her own.

Target Object: Process

Type: Negative

Application Domain: Development of CRM systems and CASE tools

Project size: 20 person years

RE Practice: The whole RE process

RE Phase: Elicitation, Analysis, Prioritisation, Negotiation, Modeling, Validation

Software Process: Agile, Waterfall, Iterative, Spiral, Code-and-Fix, Rapid prototyping

Repeatability: It happens in EVERY development

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 77

6.3 Summary and Discussion

The previous two sections discussed the results of the empirical study, which answered two

of the research questions (RQ 1.1 and RQ 2.1) from section 5.1. In this section, we present a

summary of the results and discuss them with regard to the remaining research questions (RQ

1.2, RQ.1.3, RQ.1.4, RQ 1.5, RQ 2.2, RQ 2.3, and RQ 2.4).

RQ 1.2 How many lessons learnt are in the RE literature?

As we’ve seen in Section 6.1, we elicited a total of 209 lessons from the RE literature in years

2011 and 2012; 101 lessons from year 2011 and 108 lessons from year 2012. For year 2011,

out of 162 selected papers (see table 6.1), 108 lessons were elicited, meaning that 67% of the

papers contained lessons. For year 2012, 101 lessons were elicited from 199 selected papers,

meaning that 51% of the papers contained lessons. The difference in numbers may be due to

a number of factors. First of all, some papers contained several lessons while others contained

none. Thus, there may have been papers in 2012 that were rich in lessons as opposed to the

papers in 2011, which skewed the numbers a bit. Another factor may be due to the fact that the

literature was reviewed by one researcher. While several measures have been taken to mitigate

this risk (see Section 5.3), there is a likelihood that some lessons have been overlooked in some

papers.

RQ 1.3 How are the lessons learnt expressed in the RE literature (explicitly or implicitly)?

Table 6.2 shows the numbers of explicit and implicit lessons in the literature. Out of the 101

elicited lessons of year 2011, only 25 were explicitly mentioned as lessons learnt and 76 were

implicit in the literature (i.e. there was a need to analyze the surrounding text and context to

elicit the lesson). That is, 25% are explicit lessons and 75% are implicit. For 2012, 22 out

108 lessons are explicit (20%) and 86 are implicit (80%). In general, only 47 (22%) out of

the total of 209 lessons, are explicit and 162 (78%) are implicit. We can see that the numbers

for both years do not show a significant difference. Although it is too early to draw concrete

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 78

conclusions, the current results show that our initial observation that the lessons are scattered,

mainly implicitly in the literature, holds true. This may indicate that the RE community is not

explicitly documenting the lessons they are learning.

Table 6.2: Numbers for the attribute ‘Expression’ for the lessons of years 2011 and 2012

Expression 2011 Percentage 2012 Percentage
Explicit 25 24.75% 22 20.37%
Implicit 76 75.25% 86 79.63%

RQ 1.4 Where (in which area of RE) are the lessons from the RE literature concentrated?

Table 6.3 shows the number of lessons for each RE phase for years 2011 and 2012. We can see

that the highest number of lessons in year 2011 are for the analysis (34%), elicitation (30%)

and specification (30%) phases. In 2012, while the same phases held the three top spots, the

order was a bit different. Elicitation had the highest number of lessons (33%), then analysis

(31%) and specification (23%). The difference between the number of lessons targeting docu-

mentation between 2011 and 2012 is large (1% to 19%). This can be partly explained by the

fact that one paper contained seven lessons related to documentation and another contained

five, which skewed the numbers significantly. The lessons related to the remaining RE phases

(prioritisation, negotiation, validation, verification, and managing) are similarly small for both

years. We can clearly see that there is a dearth of lessons in these areas of RE and that the

lessons are mainly targeted at the elicitation, analysis, and specification phases. It is impor-

tant to note, however, that the percentages do not add up to 100% because some lessons are

concerned with more than one phase.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 79

Table 6.3: Numbers for the attribute ‘RE Phase’ for the lesson of years 2011 and 2012

RE Phase 2011 Percentage 2012 Percentage
Unidentified 12 11.88% 15 13.89%
Elicitation 30 29.70% 36 33.33%
Analysis 34 33.66% 34 31.48%
Prioritisation 5 4.95% 5 4.63%
Negotiation 4 3.96% 6 5.56%
Specification 28 27.72% 25 23.15%
Documentation 1 0.99% 20 18.52%
Validation 7 6.93% 4 3.70%
Verification 1 0.99% 1 0.93%
Managing 3 2.97% 1 0.93%

As for the target object of the lessons, most of the lessons’ target object is ‘technique/method’;

77% and 75% for years 2011 and 2012, respectively (see Table 6.4). Lessons on ‘tools’ take

the second place; 20% and 22% for years 2011 and 2012 respectively. The lessons on the

remaining target objects are very few. This suggests that the RE community concentrates on

techniques and tools more than on any other target objects. It would be interesting to explore

the effects of this on RE practices in projects and organisations.

Table 6.4: Numbers for the attribute ‘Target Object’ for the lessons of years 2011 and 2012

Target Object 2011 Percentage 2012 Percentage
Unidentified 1 0.99% 0 0.0%
Technique/method 78 77.23% 81 75.00%
Tool 20 19.80% 24 22.22%
Policy 2 1.98% 2 1.85%
People 2 1.98% 0 0.0%
Language 5 4.95% 0 0.0%
Artifact: requirements 0 0.0% 5 4.63%
RE analyst 0 0.0% 2 1.85%

Table 6.5 shows the numbers and percentages of lessons related to each RE practice in the

table. Around half of the lessons were not clearly related to a specific RE practice (52% and

50% for years 2011 and 2012 respectively). Modeling, however, received a lot of attention

in year 2012 as opposed to year 2011(16% versus 30%). The remaining practices had only a

small number (5 maximum) of related lessons.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 80

Table 6.5: Numbers for the attribute ‘RE Practice’ for years 2011 and 2012

RE Practice 2011 Percentage 2012 Percentage
Unidentified 52 51.49% 54 50%
Tracing 4 3.96% 4 3.70%
Modeling 3 2.97% 17 15.74%
Prototyping 2 1.98% 2 1.85%
Reuse 2 1.98% 3 2.78%
Using a prioritisation framework 1 0.99% 3 2.78%
Applying ‘Pictionades’ 0 0.0% 5 4.63%
Communication 3 2.97% 5 4.63%
Interviews 1 0.99% 1 0.93%
Brainstorming 1 0.99% 1 0.93%
Annotation 1 0.99% 2 1.85%
Use of use cases 1 0.99% 1 0.93%
Use of specification pattern system (SPS) 0 0.0% 1 0.93%
Use of text-based synchronous communication 0 0.0% 5 4.63%
Use of automatic checks 1 0.99% 1 0.93%
Using patterns 1 0.99% 5 4.63%
Use of PRISM model checker 1 0.99% 1 0.93%
Use of task descriptions 1 0.99% 2 1.85%
Using feature trees 0 0.0% 1 0.93%
Using War stories approach 1 0.99% 0 0.0%
Using a social network 1 0.99% 0 0.0%
Using a framework 3 2.97% 0 0.0%
Using model-driven development 1 0.99% 0 0.0%
Using modeling languages 1 0.99% 0 0.0%
Automatic tracing 1 0.99% 0 0.0%
Using a requirements model 1 0.99% 0 0.0%
Using a specification language 1 0.99% 0 0.0%
Visualising traceability information 1 0.99% 0 0.0%
Using observation techniques 1 0.99% 0 0.0%
Using quantitative models 1 0.99% 0 0.0%
Using software quality models 1 0.99% 0 0.0%
Assisted tracing 2 1.98% 0 0.0%
Using templates 2 1.98% 0 0.0%
Using storytelling 1 0.99% 0 0.0%
Using visual narratives 1 0.99% 0 0.0%
Using CPR analysis 1 0.99% 0 0.0%
Using scenarios 1 0.99% 0 0.0%
Using storyboards 1 0.99% 0 0.0%
Protocol analysis 1 0.99% 0 0.0%

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 81

Table 6.6 shows the number of lessons for the different application domains from which they

emerged. Most of the lessons emerged from the ‘university’ domain (12% and 8% for years

2011 and 2012 respectively) as most of the experiments take place in an academic setting. We

must mention here that the lessons emerging from the ‘hearing solutions’ application domain

come from one paper.

Because the values of this attribute are highly variable, we resorted to listing the numbers

of the application domains that have 3 or more lessons only. For the complete list of applica-

tion domains, please see Chapter 4.

Table 6.6: Numbers for the attribute ‘Application Domain’ for the lessons of years 2011 and
2012

Application Domain 2011 Percentage 2012 Percentage
Unidentified 9 8.91% 7 6.48%
Automative 3 2.97% 3 2.77%
Healthcare (HIPAA) 5 4.95% 4 3.70%
University 12 11.88% 9 8.33%
Aviation 1 0.99% 6 5.55%
Solar 0 0.0% 7 6.48%
Drives 0 0.0% 6 5.55%
Hearing solutions 12 11.88% 0 0.0%
Event management 4 3.96% 0 0.0%
Software platform providing core assets to
developers of other organizations 9 8.91% 0 0.0%

For the attribute ‘software process’, about 89% of the lessons for both years 2011 and 2012 did

not identify a related software process. However, the Agile SW process has the most lessons

in 2011. In 2012, Agile and Iterative processes had an equal number of lessons.

Table 6.7: Numbers for the attribute ‘Software Process’ for the lessons of years 2011 and 2012

Software Process 2011 Percentage 2012 Percentage
Unidentified 89 88.11% 96 88.89%
Agile 10 9.90% 7 6.48%
Iterative 2 1.98% 7 6.48%
Waterfall 0 0.0% 4 3.70%

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 82

Table 6.8 shows that the lessons come mainly from case studies (52% and 43%), experiments

(17% and 8%), and industrial experience (11% and 26%) for both years 2011 and 2012, re-

spectively. The lessons from industrial experience in 2012 are considerably more than their

counterpart in 2011. While the reason behind this is not clear, one plausible explanation may

be that the conferences in 2012 accepted more industrial papers than in 2011. We can see that

the numbers are in favour of the lessons from case studies. It would be interesting to explore

the reasons and implications of this observation. In addition, this may say something about

the reliability of the lessons because a lesson from an experiment for example, may be more

reliable than one from a case study as experiments are conducted under certain conditions that

can be replicated.

Table 6.8: Numbers for the attribute ‘source’ for the lessons of years 2011 and 2012

Source 2011 Percentage 2012 Percentage
Unidentified 0 0.0% 0 0.0%
Qualitative study 1 0.99% 0 0.0%
Systematic review 3 2.97% 0 0.0%
End user study 1 0.99% 0 0.0%
Case study 52 51.49% 46 42.59%
Exploratory experiment 1 0.99% 0 0.0%
Controlled experiment 6 5.94% 10 9.26%
Exploratory study 4 3.96% 2 1.85%
Confirmatory case study 0 0.0% 1 0.93%
Experiment 17 16.83% 9 8.33%
Pilot case study 1 0.99% 2 1.85%
Quasi-experiment 2 1.98% 0 0.0%
Explanatory case study 1 0.99% 0 0.0%
Retrospective case study analysis 0 0.0% 1 0.93%
Survey 1 0.99% 3 2.78%
Questionnaire 1 0.99% 5 4.63%
Field assessment 1 0.99% 0 0.0%
Evaluating example 1 0.99% 0 0.0%
Illustrative example 0 0.0% 2 1.85%
Simulation 0 0.0% 1 0.93%
Workshop 0 0.0% 1 0.93%
Document analysis study 1 0.99% 0 0.0%
Industrial experience 11 10.89% 28 25.93%

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 83

Table 6.9 shows that most lessons are ‘positive’. We came across 3 cases where the lesson

was both negative and positive because the experience from which it was derived had both

successful and failing aspects. This did not occur to us in the beginning of the study, but after

eliciting the lessons, we realised that it was difficult to identify whether a lesson was ‘positive’

or ‘negative’ in a clean-cut manner. A possible explanation for the large number of positive

lessons is that researchers tend to publish positive results rather than negative ones.

Table 6.9: Numbers for the attribute ‘Type’ for the lessons of years 2011 and 2012

Type 2011 Percentage 2012 Percentage
Unidentified 0 0.0% 0 0.0%
Positive 83 82.17% 64 59.26%
Negative 13 12.87% 29 26.85%
Both 2 1.98% 1 0.92%
Neutral 3 2.97% 14 12.96%

Table 6.10 shows how many of the following attributes were identified and unidentified in the

elicited lessons from years 2011 and 2012: project size, project date, recording date, organi-

zation name, rationale and impact. We do not list the values of the attributes as they are not

of significant importance to our research goal; they are meant to aid users during the reuse of

a lesson. It can be noticed that almost none of the lessons indicated the project and recording

dates. This was expected as these dates may be relevant only when lessons learnt are utilised

in practice. In our case, the publication year is a good indication of the date of the lesson.

RQ 1.5 What is the quality of the lessons learnt elicited from the RE literature?

To assess the quality of a specific lesson, we compare the completeness of the values of its

attributes to the complete set of attributes. Thus, fewer the ‘unidentified’ (i.e. N/A) values,

higher the quality of a lesson. Although there are many unidentified values in the lessons we

elicited, there are lessons with more identified values than others. We demonstrate our ap-

proach here with a few examples of high and low quality lessons.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 84

Table 6.11 contains an example of a low-quality lesson. Out of the 19 attributes (we consid-

ered the ‘journal’, ‘conference’, and ‘workshop’ attributes as one because it is an OR situation;

filling one of them is considered sufficient information), only 9 attributes had values. The ab-

sence of the attribute values for application domain, project size, impact, RE practice, and RE

phase, makes it difficult to assess the applicability of the lesson to other contexts. For reasons

of anonymity, we have decided “not” to include citation and identification of the lessons learnt.

Table 6.11: An example of a low quality lesson from literature

Attribute Value
ID LL050 12
Journal N/A
Conference N/A
Workshop MoDRE
Year 2012

Lesson
“When requirements are captured with models, for a variety of reasons
it is necessary to maintain them in hierarchical databases.”

Source Industrial experience

Rationale
“Because of the impedance mismatch between model structure
(directed graph) and requirements database (tree structure).”

Impact N/A
Target Object Technique/method
Type Negative
Expression Explicit
Application Domain N/A
Project Size N/A
RE Practice N/A
RE Phase N/A
Software Process N/A
Project Date N/A
Recording Date N/A
Organisation Name N/A
Repeatability N/A

Table 6.12 contains an example of a relatively high-quality lesson. Out of the 19 attributes, 16

of the values are given. The missing attributes (project date, recording date, and organization

name) do not significantly affect the quality, and thus, applicability of the lesson. Project size

and impact are given in detail, therefore, giving an idea of where to apply the lesson and what

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 85

to expect from applying it.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 86

Table 6.12: An example of a high quality lesson from literature

Attribute Value
ID LL077 12
Journal N/A
Conference REFSQ
Workshop N/A
Year 2012

Lesson
Use variability modeling that allows abstracting from requirements
with AND, OR, and REQUIRES relationships to structure the
release planning inputs.

Source Case study.

Rationale
“Requirements catalogues for software release planning are often not
complete and homogeneous. Current release planning approaches,
however, assume such commitment to detail at least implicitly.”

Impact

“The feature tree, in comparison with a flat backlog of requirements,
reduced complexity of release planning. The abstraction from
requirements to features reduced the total number of elements to be
considered by a factor 10.3. The feature tree provided a basis
to discuss the scope of pilot projects with the stakeholders
identified in the stakeholder tree. Stakeholder needs that could not
directly be addressed led to discovering new potential features.
In comparison to a flat list of requirements, the feature tree allowed
building a mental model of the solution. The reduced number of
features allowed building a shared vocabulary with stakeholders,
the color coding visualizing growth of the solution, and AND-OR
feature dependencies understanding design options. This focused
discussions and communication with stakeholders on aspects that were
essential for planning. Decisions could be taken together with
these stakeholders, which led to trust in the plans and in the product
organization.”

Target Object Technique/method
Type Positive
Expression Implicit

Application Domain Software as a service for managing media such as text, sound, pictures,
and movies

Project Size

“Responsible for the development was a product manager, a project
manager, and a team of up to five developers. The requirements
catalogue was managed in a word processor document and used as a
basis for release planning. It contained 108 requirements. The
requirements were grouped into 12 sections and 19 subsections or
themes. In average, a group contained 3.6 requirements and was
allocated to 1.93 releases.”

RE Practice Modeling, using feature trees
RE Phase Analysis
Software Process Agile
Project Date N/A
Recording Date N/A
Organisation Name N/A
Repeatability First time case study results

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 87

Applying this method to asseses the quality of the elicited lessons will result in lessons of vary-

ing degrees of quality. None of the elicited lessons had all the values. However, the quality

of the lessons varied between the two examples we gave above. This assessment dealt with

the ‘completeness’ issue of a lesson, which is only one of aspect of quality we are planning

to assess. As part of our future work, we are considering other quality aspects such as giving

the attributes ‘weights’, as the presence of one attribute may be more important than another.

For example, the attribute ‘application domain’ is more important than the attribute ‘record-

ing date’. Because the associated risk with not knowing which application domain the lessons

emerged from is higher than that of not knowing the recording date of a lesson, which is used

usually for technicalities within an organization. In addition, we intend to evaluate the sources

of the lessons with relation to quality. A lesson from a controlled experiment, for example,

may be considered of higher quality than one from a case study if a “causal” relationship is an

integral part of the lesson learnt.

RQ 2.2 Where (in which area of RE) are the lessons from the practice concentrated?

The answers we have received so far from the survey (seven responses) are not sufficient for a

complete analysis and interpretation. We will, however, discuss the available responses.

Although the number of lessons is small, the same trend we noticed in the results from the

systematic literature review appears to hold true here. Most of the lessons are for the elicitation

phase (all seven lessons) with an equal number of lessons for the analysis and specification

phases (five lessons). Four of the lessons are for the prioritisation phase, three for negotiation

and two for the validation and documentation phases.

Most of the lessons’ (five lessons) target objects are ‘process’, then ‘technique/method’ (four

lessons), ‘policy’ (three lessons), ‘tool’ (one lesson), ‘project management’ (one lesson), and

‘communication’ (one lesson).

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 88

The application domains were different for each lesson: banking, curriculum management, so-

cial websites, non-profit, e-learning, CRM system and CASE tool development (two lessons).

With regard to the RE practice related to the lessons, five lessons did not identify an RE prac-

tice and two indicated that the lesson is applicable to the ‘whole RE process’.

The ‘waterfall’ software process had the most lessons (five lessons) iterative, spiral, code-

and-fix have 4 lessons each, Agile has 3 lessons, and rapid prototyping has two lessons. The

selection, however, may be affected by the fact that we listed all the different software pro-

cesses for the respondent to choose from. If that hadn’t been the case, these software processes

may have not occurred to them.

The source of the all the lessons was ‘industrial experience’. This, however, was expected

as it is the aim of the survey to gather lessons from industry.

It is interesting to note that 6 out of the 7 lessons were ‘negative’. If you recall from our

discussion of the lesson types from the systematic literature review, the majority of the lessons

were ‘positive’. If this pattern continued with an increased number of responses, it would be

interesting to explore the reasons behind this difference of lesson types between industry and

research.

RQ 2.3 What is the quality of the lessons learnt elicited from RE practice?

When applying the same quality assessment method discussed above to the lessons elicited

from practice, we will get the same lessons with varying degrees of quality. Most of the pro-

vided lessons, however, had all of the required values except for ‘RE practice’. The least

complete lesson is shown in table 6.13, which is missing 4 values out of a total of 14 attributes.

www.manaraa.com

Chapter 6. Results of the Empirical Study: Elicited Lessons 89

Table 6.13: An example of a low quality lesson from practice

Attribute Value
ID LL111 12
Year 2012

Lesson

-It is important the organization and writing of the requirements
in order there are not misunderstandings among the customer
and developer.
- It is important that they are enough complete and detailed,
in order the developer can not skip to implement some aspect
of the system.
- In systems with a lot of different user roles and IT previous
knowledge it is impossible to satisfy the needs of all future users.
It is the customer organization who has to finally decide when
there are contradictory requirements, and do some activities to
teach the users of the new system to get used to it and to the
changes in processes that it implies.

Source Other
Rationale N/A
Impact N/A
Target Object Technique/method, process, policy
Type Negative
Application Domain Curriculum Management, other diverse domains...
Project Size 3000 users, other diverse sizes.
RE Practice N/A
RE Phase Elicitation, Specification
Software Process Agile, Waterfall, Iterative, Spiral, Code-and-Fix, Rapid prototyping
Repeatability I think they are both repeatable in all contexts.

RQ 2.4 How do the lessons learnt from industry compare with the lessons learnt from litera-

ture?

Although it is quite early to make a comparison, when comparing the available lessons from

industry with the lessons from practice, one striking difference is that the lessons we collected

from the survey tend to be more of a general nature, while the lessons elicited from the literature

are more specific. A reasonable explanation would be that the respondents are sharing lessons

‘from the top of their heads’ in a survey and not specific lessons that they may encounter during

a project. A different method for collecting lessons may yield different results.

www.manaraa.com

Chapter 7: Populated RE Lesson Maps

In chapter 6 we presented the results of the empirical study (i.e., lessons elicited from liter-

ature and practice). In this chapter, we use the elicited lessons to populate the RE Lesson

Maps we discussed in Chapter 4. As we’ve discussed previously, the Lesson Maps allow for

different permutations of one or more attributes. We choose here the following five different

permutations to demonstrate the distribution of lessons across selected attributes:

• RE Phase (section 7.1): to depict the distribution of lessons across the different RE

phases. Although the discussion of the results in Chapter 6 identified where the lessons

are concentrated, it would be enlightening to see it depicted visually in a RE Lesson

Map.

• RE Phase X Expression (section 7.2): to depict the distribution of explicit and implicit

lessons across the different RE phases. This will help in showcasing, for example, where

the explicit lessons are concentrated (e.g., elicitation, validation, etc.)

• Type X Source (section 7.3): to depict the distribution of positive and negative lessons

across the sources of lessons. This would help in identifying, for example, where the

negative lessons mainly come from (e.g., industrial experience, case studies, etc.)

• Target Object X RE Phase (section 7.4): to depict the distribution of the lessons’ target

object across the RE phases. This would help in identifying, for example, where the

lessons on tools are concentrated (e.g., elicitation, analysis, etc.).

• Type X Expression X RE Phase (section 7.5): to depict the distribution of negative and

positive across the explicit and implicit lessons across the different RE phases. We can

see then, for example, all the positive, explicit lessons under elicitation.

It is important to note that there are far more different permutations of RE Lesson Maps. We

have selected the aforementioned permutations because the results are anticipated to yield in-

90

www.manaraa.com

Chapter 7. Populated RE LessonMaps 91

teresting emerging hypotheses. In addition, it would be difficult to manually depict maps con-

sisting of more than three attributes or attributes that have many values for the large number

of lessons we have. This is one of the current limitations of our approach, which we discuss

in Chapter 9. Another note here is that the maps were populated with the lessons elicited from

literature only. Due to the small number of lessons we have received thus far from practice, we

did not include them in the Lesson Maps.

7.1 Map 1: RE Phase

This map (Figure 7.1) depicts the distribution of all the elicited lessons across the different RE

phases (elicitation, analysis, prioritisation, negotiation, specification, documentation, valida-

tion, verification, and managing). We can see that the lessons are concentrated in the elicita-

tion, analysis phases, then the specification phase. The lessons in the managing and verification

phases are scarce, which may indicate a lack of studies in those areas.

7.2 Map 2: RE Phase X Expression

Figure 7.2 depicts the the distribution of implicit and explicit lessons across the different RE

phases. According to the results of the empirical study (Chapter 6), it is not a surprise that

most of the lessons (in varying degrees) are implicit, with most of the implicit lessons falling

under the elicitation and specification phases. The explicit lessons, however, are mainly con-

centrated under the analysis and specification phases, which indicates a conscious effort from

the RE community to learn and share their lessons in these two phases as opposed to the other

phase (e.g., prioritisation, negotiation, validation, verification and managing). The dearth of

explicit lessons in the remaining phases may indicate that the RE community is not giving

them adequate attention, thus, not learning enough.

7.3 Map 3: Type X Source

This map (Figure 7.3) depicts the distribution of negative, positive, and neutral lessons across

the following sources: case study, controlled experiment, experiment, and industrial experience

www.manaraa.com

Chapter 7. Populated RE LessonMaps 92

(we left out the sources with a very small number of lessons). Given the fact that most of the

elicited lessons are positive and come from case studies (see Chapter 6), the concentration of

lessons in the intersection of ‘positive’ and ‘case study’ comes as no surprise. However, an

interesting observation worth noting is that, despite the relatively small number of negative

lessons, most of the negative lessons come from industrial experience. This may suggest that

researchers tend to share the positive experiences from their studies, while practitioners are

more willing to share their negative experiences with the community. Although we did not

include the lessons from practice (i.e., survey) in the Lesson Maps, if you recall from Chapter

6, 6 out of the lessons from industry were negative, which further supports this observation.

7.4 Map 4: Target Object X RE Phase

In this map (Figure 7.4), we were concerned with learning about the distribution of the lessons’

target objects across the different RE phases. The map shows that most of the lessons are con-

cerned with techniques/methods for the elicitation and analysis phases. While there is a rela-

tively good number of lessons on techniques and methods for the specification, prioritisation,

negotiation, and validation phases, we cannot say the same for the verification and managing

phases. The lessons on tool are mainly for the analysis phase, then the elicitation and specifi-

cation phases. The lessons on tools for the remaining phases are scarce. This is an interesting

observation as the there is a good amount of RE tools for documenting and managing require-

ments. However, it seems that researchers and practitioners are not learning or sharing lessons

in those areas. The lessons on the remaining target objects (policy, people, language, require-

ments, RE analysts) for all the RE phases are meager. Although ‘people’ (i.e. stakeholders)

play an important role in the RE process, there doesn’t seem to be any relevant lessons in the

literature.

www.manaraa.com

Chapter 7. Populated RE LessonMaps 93

7.5 Map 5: Type X Expression X RE Phase

Figure 7.5 depicts the distribution of lessons across three dimensions: type, expression and

elicitation. We mentioned in Chapters 3 and 4 that there is no restriction on the number of di-

mensions that a map may represent. However, due to the difficulty of depicting more than three

dimensions in a tabular form with no tool support, we will show an example of a 3-dimensional

map only. It can be observed that there are many more negative implicit lessons than explicit

lessons. There are four phases (elicitation, negotiation, verification, and validation) that do not

have any explicit, negative lessons. This again supports our previous claim that individuals

and organisations, mainly researchers, may not be so keen on sharing negative experiences ex-

plicitly. The only case where there are more explicit lessons than implicit ones are under the

‘documentation’ phase. The positive explicit lessons are more than than the negative ones.

We are aware that lessons from two-years worth of literature may not be representative of

the state of lessons learnt in RE; however, these maps provide a good starting point to build

upon for future studies. Further studies to support or disprove these studies will be helpful.

In addition, empirical studies that study the reasons and effects of the presented observations

may aid in improving RE processes. Moreover, these depictions illustrate the potential benefits

of the proposed maps and aids us in achieving our overall research objective (i.e, learning the

state of lessons learnt in RE).

www.manaraa.com

Chapter 7. Populated RE LessonMaps 94

Fi
gu

re
7.

1:
‘R

E
Ph

as
e’

L
es

so
n

M
ap

www.manaraa.com

Chapter 7. Populated RE LessonMaps 95

Fi
gu

re
7.

2:
‘R

E
Ph

as
e

X
E

xp
re

ss
io

n’
L

es
so

n
M

ap

www.manaraa.com

Chapter 7. Populated RE LessonMaps 96

Fi
gu

re
7.

3:
‘T

yp
e

X
So

ur
ce

’L
es

so
n

M
ap

www.manaraa.com

Chapter 7. Populated RE LessonMaps 97

Fi
gu

re
7.

4:
‘T

ar
ge

tO
bj

ec
tX

R
E

Ph
as

e’
L

es
so

n
M

ap

www.manaraa.com

Chapter 7. Populated RE LessonMaps 98

Fi
gu

re
7.

5:
‘T

yp
e

X
E

xp
re

ss
io

n
X

R
E

Ph
as

e’
L

es
so

n
M

ap

www.manaraa.com

Chapter 8: Implications

This chapter describes the implications of the results of our study. Sections 8.1 and 8.2 discuss

the implication on research and practice respectively.

8.1 Implications on Research

This study has implications on research in several dimensions. Firstly, the observations made

from the populated maps are anticipated to promulgate further research in order to either sup-

port or refute the observed trends. Further empirical studies are needed to understand the

drivers and effects of these trends on practice, project time, cost and quality, which may lead

to the creation of new RE theories through lesson-driven feedback from practice.

Secondly, to our knowledge, such a comprehensive list of lessons learnt does not exist. There-

fore, our list of lessons adds significantly to the current RE body of knowledge.

Thirdly, during our discussion of the related work (see Chapter 2), we demonstrated how the

topic of lessons learnt has been given relatively significant attention in non-software engineer-

ing disciplines at large and in software engineering in general. The same, however, cannot be

said about requirements engineering. Therefore, we hope that this work and our future work

on the topic raise awareness among individuals in the RE community about the importance of

lessons learnt in RE encouraging them to take action to bring the concept of lessons and lesson

maps to life in the RE field.

Finally, as we’ve seen in Chapters 6 and 7, the large number of lessons and the complexity

of the resultant maps call for research on tools to support the storage, operationalisation, and

management of the lessons and lesson maps. Although researchers have proposed tools for

lessons learnt in other domains (e.g., Lessons Learnt System for Software Testing [Andrade

99

www.manaraa.com

Chapter 8. Implications 100

et al., 2013]), to our knowledge, no RE specific lessons learnt tools are available, especially

those that support our lessons representation and lesson maps (see Appendix D for some initial

ideas for a RE lesson learnt tool).

8.2 Implications on Practice

The proposed maps and the elicited lessons are anticipated to change the survey statistics

favourably (see Appendix A): increased use and creation of RE lessons in projects; increased

sharing of lessons; simplified access to lessons; etc. This would promote a grass-roots dis-

cipline of RE lessons across people, projects, applications, domains, etc. The utilisation of

the lessons and lesson maps in practice will aid RE practitioners during the RE process and

consequently, improve it. The effects of this improvement is anticipated to be felt upon overall

project costs, quality, and time. It is important to note that the presented concepts are generic

enough for use outside RE thus promoting this philosophy elsewhere in a project.

www.manaraa.com

Chapter 9: Limitations, Future Work and Conclusions

Section 9.1 of this chapter discusses the limitations of our study and the ongoing future work

we intend to carry to address these limitations. Finally, Section 9.2 concludes the thesis.

9.1 Limitations and Future Work

In Chapter 2, our analysis of the related work showed that lessons learnt have not received

significant attention in the field of RE. To the best of our knowledge, this study is the first of

its kind that extensively studied the topic of lessons learnt specifically within the RE domain.

The novel solution (i.e., RE lesson maps) and knowledge (i.e., elicited lessons) contribute to

scientific body of knowledge in RE. However, it is important to note that our study has its lim-

itations and researchers and practitioners are encouraged to take caution when generalising the

results of our study in research and practice.

In this study, we presented our concept of a RE lesson and RE lesson map, which were based on

scientific groundings, and which were validated by several experts (see Section 4.3). Despite

these efforts, further research and feedback from both researchers and practitioners is needed

to develop a well-rounded and mature concept of lessons and lesson maps that can be utilised

in practice. To address this issue, we intend to get further feedback from research and industry

as part of our going future work by publishing further peer-reviewed papers and conducting

empirical studies in industrial settings to validate our concepts for consistency, completeness

and usefulness.

Another limitation of this study is concerned with the results of the empirical studies (i.e.

elicited lessons learnt). First of all, the lessons from the systematic literature review is not

representative of all the RE literature. We, therefore, intend to expand on the resources used

for the SLR by including more journals, conference and workshop proceedings, from more

101

www.manaraa.com

Chapter 9. Limitations, FutureWork and Conclusions 102

years. Second of all, due to the fact that the systematic literature review was conducted by

one researcher, the results of the study may be prone to researcher bias (i.e., overlooking some

lessons and including others that may not be considered a lesson). To deal with this limitation,

we plan on including more researchers in the study to validate the elicited lessons. Thirdly,

the lessons we have received to date from industry are very small in number. Distributing the

survey to more participants of diverse backgrounds in RE and using other methods to gather

RE lessons from practitioners (e.g., interviews, workshops, brainstorming sessions) are part of

our ongoing work.

Finally, we saw in Chapter 6 that the size of the results from only two-year literature is rather

large. Therefore, the increased number of elicited lessons complexity of maps will increase the

difficulty with which we manage, store and operate on the lessons and lesson maps. In addi-

tion, more advanced features and operations will facilitate the use of lessons and lesson maps

in practice. Hence, adequate tool support is needed to deal with these concerns (see Appendix

D for a working concept of a LL tool).

However, the discussed limitations do not diminish the importance of our results as they are

considered a first step towards laying the groundwork for lessons learnt in RE.

9.2 Conclusions

Lessons learnt have been explored in many non-software engineering disciplines such as edu-

cation [Bodycott and Walker, 2001], management [Lee, 2008], medicine [Rogers et al., 2001]

and others. In software engineering lessons learnt also, lessons learnt have received significant

attention. Researchers and practitioners in software engineering explicitly share their lessons

(e.g., [Basili et al., 2002, Boehm, 2006, Dick and Woods, 1997]) and propose methods, pro-

cesses, and tools (e.g., [Andrade et al., 2013, Weber et al., 2001, Vandeville and Shaikh, 1999])

for lessons learnt. On the other hand, lessons learnt in RE, to our knowledge, have not yet been

www.manaraa.com

Chapter 9. Limitations, FutureWork and Conclusions 103

systematically explored. Our research objective was to understand and determine the state of

lessons learnt in RE and promote their use by creating a scientific basis for the structuring and

organization of lessons embodied in the concept of “Lesson Maps” and populating them with

lessons elicited from the literature and practice. To achieve this objective, we presented, in this

thesis, our solution-building (i.e., RE Lesson Maps) and knowledge-seeking (i.e., empirical

study) work on lessons learnt, which is the first of its kind in the field.

Our presented structured representation of a RE lesson provides a means to encapsulate a les-

son along with its context information to allow for use in similar situations. The Lesson Maps

provide a means to organise lessons in a way that shows the distribution of RE lessons across

different RE subareas, application domains, RE practices, etc. These maps, once populated,

will help us in better understanding the state of lessons learnt in RE. The concepts of a RE

lesson and lesson map have been peer-reviewed and validated by senior researchers who gave

positive feedback with regard to its potential usefulness and benefits.

To achieve our research objective of understanding the state of lessons learnt in RE, we pop-

ulated the RE Lesson Maps with lessons elicited from literature. We found 209 lessons from

two-year literature (2011 and 2012). Out of the 209 lessons, only 47 (22%) lessons were

explicitly mentioned in the literature. The remaining 78% of the lesson were implicit in the

literature (see Table 6.2, Chapter 6). This may indicate that the RE community is not explicitly

documenting their lessons learnt.

The lessons were mainly concentrated in the elicitation (32%), analysis (35%), and specifi-

cation (25%) RE phases (see Table 6.3, Chapter 6). The lessons for the remaining RE phases

were very small. The results also showed that 76% and 21% of the lessons targeted tech-

niques/methods and tools for the RE process, respectively (see Table 6.4, Chapter 6). 47% of

the lessons came from case studies, 22% from some form of experiment, and 19% from indus-

www.manaraa.com

Chapter 9. Limitations, FutureWork and Conclusions 104

trial experience (see Table 6.8, Chapter 6). 70% of the lessons were positive, 20% negative,

and 10% neutral (see Table 6.9, Chapter 6). One interesting finding from populating the lesson

maps was that the majority of negative lessons came from industrial experience (see Figure

7.3, Chapter 7).

Our concepts of a lesson and lesson map and the results from the empirical study have im-

plications on both practice and industry. The elicited lessons and proposed lesson maps are

anticipated to aid practitioners in their RE processes, and consequently, improve them. The

results from the empirical study add to the scientific body of knowledge in the RE field. This

calls for further empirical studies to validate and better understand the consequences of our

results.

Our ongoing future work is intended to address some of the limitations of our study, such

as the two-year literature that has been reviewed, which will be expanded by adding resources

from more years. More lessons will also be elicited from practice as the current number of

lessons is very small. Finally, further feedback from researchers and practitioners will be ob-

tained to develop and mature our concepts of RE lessons and lesson maps.

From the above, we conclude that:

• Lessons maps (the solution-seeking part of this work) are a promising way to obtain an

impression of the light and dark areas of RE.

• The populated maps indicate that approximately only 20% of the elicited lessons are

explicitly described in the literature and 80% are implicit (See Table 6.2, Chapter 6).

There is thus a lot of room to reverse the trend.

• Due to the potentially increasing number of lessons learnt and thus, the complexity of

the lesson maps, there is a need for tools for lessons learnt in RE as they are non-existent

www.manaraa.com

Chapter 9. Limitations, FutureWork and Conclusions 105

–even as prototypes. This is much needed if we are to promote lessons learnt in daily

practice of RE.

• Lesson quality is an important aspect if we are to ensure usability and reuse of the lessons

learnt.

www.manaraa.com

Appendix A: A Survey of Lessons Learnt

The following survey was used to get a better understanding of the state of lessons learnt in

practice.

The Survey:

Demographic Information

Type of organization you work in (Please choose all that apply in your case):

• Industry

• Governmental organization

• Academic institution

• Other (please specify)

Number of years of experience in software/system development or IT:

• 1-4 years

• 5-10 years

• 11-15 years

• 16 + years

Number of years of experience as a Requirements Analyst or Business Analyst (or related

area):

• None

• 1-4 years

106

www.manaraa.com

• 5-10 years

• 11-15 years

• 16 + years

Key roles played in the organization (Please choose all that apply in your case):

• Manager

• Requirements Analyst/Engineer

• Business Analyst

• Developer

• Architect

• Other (please specify)

Survey Questions - There are nine questions

1. What do you understand by the term ”lesson”? Please choose all that you think that

apply.

• Positive lesson: A successful experience that encourages the same/similar behavior

in a similar situation in the future to achieve the same/similar observed results.

• Negative lesson: An unpleasant experience that requires different behavior in a

similar situation in the future to avoid the observed results.

• Other (please write your definition of a ”lesson”)

2. How important do you think are lessons learned in Requirements Engineering (RE) for

your organization’s ”RE” processes? (Note that lessons can come from sources such as:

past projects, people, websites, literature, etc.)

107

www.manaraa.com

• Very important

• Somewhat important

• Unimportant

• Other (please specify):

3. How often are RE lessons learned actually used in your organization’s RE processes?

• Frequently

• Occasionally

• Hardly ever

• Other (please specify):

4. If the practice of using RE lessons learned in projects is ingrained in your organisation,

please indicate the sources from which these lessons were (or are being) obtained:

• Development projects, including methods, techniques, tools, processes, artifacts,

products, etc.

• People

• Websites

• Peer-reviewed scientific literature

• Books

• Technical reports

• Other sources (please indicate which):

5. If your organization uses RE lessons in projects, how are these lessons shared within the

organization? Please select all that apply:

• Database, knowledge base, web server, or other form of formal storage of lessons

learned.

108

www.manaraa.com

• Formally communicated in workshops, training or tutorial sessions and the like.

• Informal sharing (e.g., verbally communicated by individuals).

• Other (please specify):

6. How difficult is it for your organisation to find, gather, elicit or get access to RE lessons

learned from whichever sources? Please indicate this in the table below.

Very difficult Difficult Manageable Easy Very Easy
Development projects
People
Websites
Peer-reviewed
scientific literature
Negotiation
Books
Technical reports
Other sources

7. If your organization does NOT use (or seldom uses) RE lessons learned in projects,

would it actually use them if they were made readily available? Please choose one of the

following:

• Yes

• Maybe (please explain)

• No (please indicate why)

8. What do you think is the impact of not (or seldom) utilising lessons learned in projects,

in terms of productivity loss, project delays, cost overruns, etc.? Please choose the level

of impact for each attribute in the table below.

109

www.manaraa.com

Very High High Medium Low Very Low
Productivity loss
Project delays
Cost overruns
Product quality problems
Repeating mistakes
Opportunities lost
Project failure
Customer dissatisfaction

9. Any other comment you would like to make?

Results:

Type of organization you work in (Please choose all that apply in your case):

Value Count Percentage
Industry 36 80.0%

Governmental organization 3 6.7%
Academic institution 13 28.9%
Other (please specify) 8 17.8%

Number of years of experience in software/system development or IT:

Value Count Percentage
1-4 years 6 13.3%

5-10 16 35.6%
11-15 10 22.2%

16+ years 13 28.9%

Number of years of experience as a Requirements Analyst or Business Analyst (or related

area):

Value Count Percentage
None 5 11.1%

1-4 years 15 33.3%
5-10 13 28.9%

11-15 7 15.6%
16+ years 5 11.1%

110

www.manaraa.com

Key roles played in the organization (Please choose all that apply in your case):

Value Count Percentage
Manager 23 51.1%

Requirements Analyst/Engineer 30 66.7%
Business Analyst 13 28.9%

Developer 20 44.4%
Other (please specify) 13 28.9%

1. What do you understand by the term ”lesson”? Please choose all that you think that

apply.

Value Count Percentage
Positive 36 81.8%

37 30 84.1%
Other (please write your definition of a “lesson”) 10 22.7%

2. How important do you think are lessons learned in Requirements Engineering (RE) for

your organization’s ”RE” processes? (Note that lessons can come from sources such as:

past projects, people, websites, literature, etc.)

Value Count Percentage
Very important 26 59.1%

Somewhat important 14 31.8%
Unimportant 1 2.3%

Other (please specify) 3 6.8%

3. How often are RE lessons learned actually used in your organization’s RE processes?

Value Count Percentage
Frequently 13 29.6%

Occasionally 21 47.7%
Hardly ever 10 22.7%

Other (please specify) 0 0.0%

111

www.manaraa.com

4. If the practice of using RE lessons learned in projects is ingrained in your organisation,

please indicate the sources from which these lessons were (or are being) obtained:

Value Count Percentage
Development projects 32 82.1%

People 34 87.2%
Websites 3 7.7%

Peer-reviewed scientific literature 5 12.8%
Books 9 23.1%

Technical reports 5 12.8%
Other sources (please indicate which) 6 15.4%

5. If your organization uses RE lessons in projects, how are these lessons shared within the

organization? Please select all that apply:

Value Count Percentage
Database, knowledge base, web server,
or other form of formal storage 14 33.3%

Formally communicated in workshops,
training or tutorial sessions 16 38.1%

Informal sharing 38 90.5%
Other (please specify) 3 7.1%

6. How difficult is it for your organisation to find, gather, elicit or get access to RE lessons

learned from whichever sources? Please indicate this in the table below.

Very difficult Difficult Manageable Easy Very Easy
Development
projects 3 (7.1%) 7 (16.7%) 18 (42.9%) 10 (23.8%) 4 (9.5%)

People 1 (2.5%) 6 (15.0%) 15 (37.5%) 8 (20.0%) 10 (25.0%)
Websites 4 (10.3%) 13 (33.3%) 14 (35.9%) 7 (17.9%) 1 (2.6%)
Peer-reviewed
scientific literature

6 (15.0%) 16 (40.0%) 8 (20.0%) 10 (25.0%) 0 (0.0%)

Books 3 (7.9%) 9 (23.7%) 14 (36.8%) 12 (31.6%) 0 (0.0%)
Technical reports 7 (18.4%) 10 (26.3%) 15 (39.5%) 6 (15.8%) 0 (0.0%)
Other sources 3 (11.5%) 8 (30.8%) 14 (53.8%) 1(3.8%) 0 (0.0%)

7. If your organization does NOT use (or seldom uses) RE lessons learned in projects,

112

www.manaraa.com

would it actually use them if they were made readily available? Please choose one of the

following:

Value Count Percentage
Yes 12 46.2%

Maybe (please explain) 10 38.5%
No (please indicate why) 4 15.4%

8. What do you think is the impact of not (or seldom) utilising lessons learned in projects,

in terms of productivity loss, project delays, cost overruns, etc.? Please choose the level

of impact for each attribute in the table below.

Very High High Medium Low Very Low
Productivity loss 7 (16.7%) 21 (50.0%) 8 (19.0%) 3 (7.1%) 3 (7.1%)
Project delays 5 (11.9%) 22 (52.4%) 11 (26.2%) 2 (4.8%) 2 (4.8%)
Cost overruns 7 (16.7%) 20 (47.6%) 12 (28.6%) 1 (2.4%) 2 (4.8%)
Product quality problems 13 (31.0%) 17 (40.5%) 10 (23.8%) 2 (4.8%) 0 (0.0%)
Repeating mistakes 20 (47.6%) 19 (45.2%) 2 (4.8%) 1 (2.4%) 0 (0.0%)
Opportunities lost 6 (14.6%) 8 (19.5%) 11 (26.8%) 13 (32.6%) 3 (7.3%)
Project failure 3 (7.0%) 12 (27.9%) 12 (27.9%) 14 (32.6%) 2 (4.7%)
Customer dissatisfaction 10 (24.4%) 13 (31.7%) 11 (26.8%) 5 (12.2%) 2 (4.9%)

113

www.manaraa.com

Appendix B: Lessons Learnt in Requirements Engineering: A Survey

This appendix includes the survey we used at REFSQ’13 to elicit lessons from practice.

Demographic Information

Type of organization you have worked in substantially (please choose one or more):

• Industry

• Governmental organization

• Academic institution

• Other (please specify)

Key roles played in your career (please choose one or more):

• Manager

• Requirements Analyst/Engineer

• Business Analyst

• Developer

• Architect

• Researcher

• Consultant

• Teacher

• Other (please specify)

Number of years of work experience:

114

www.manaraa.com

• None

• 1-4 years

• 5-10 years

• 11-15 years

• 16 + years

Survey Questions

1. Please type your lesson in the following box:

2. Lesson repeatability:

Is this lesson ”repeatable”? If yes, please justify this, giving the properties of this les-

son which makes it repeatable and the context in which it is repeatable (including any

contexts in which you think it is *not* repeatable).

3. Rationale:

Why do you think this lesson is important?

4. Source of the lesson:

• Industrial experience

• Case study

• Survey

• Controlled experiment

• Other

5. Target object of the lesson:

The ’target object’ of a lesson is the ”thing” the lesson is about.

• Technique/method

115

www.manaraa.com

• Tool

• Process

• Product

• Policy

• Other

6. Negative lesson: A lesson from an unsuccessful experience that requires different be-

haviour in a similar situation in the future to avoid the observed results.

Positive lesson: A lesson from a successful experience that encourages the same/similar

behaviour in a similar situation in the future to achieve the same/similar observed results.

Lesson type:

• Positive

• Negative

7. Application domain from which the lesson emerged:

E.g.: banking, healthcare, electronics, etc.

8. Project size (if applicable):

Any information indicating the size of the project from which the lesson was derived

(e.g., number of people, number of LOC or function-points, person-years, etc.).

9. RE Activity(s) (choose one or more):

One or more RE activities to which the lesson applies.

• Elicitation

• Analysis

• Prioritisation

116

www.manaraa.com

• Negotiation

• Specification

• Documentation

• Modeling

• Validation

• Other:

10. RE Practice(s) (if applicable) to which the lesson is related:

An RE practice is a specific way for achieving a particular software development goal

and it may be applied to one or more subprocesses (e.g., prototyping, using checklists,

use case modelling, prioritisation via voting, tracing using a requirements tool, win-win

model of negotiation, elicitation via interviews, using a prioritisation framework, etc.)

11. Software Process (choose one or more if applicable):

The software process to which the lesson may apply.

• Agile

• Waterfall

• Iterative

• Spiral

• Code-and-Fixe

• Rapid prototyping

• Other:

12. Impact:

What is the anticipated impact of the lesson on such items as: product quality, process

efficiency, project costs, effort needed in carrying out tasks, etc. Be as specific as you

can.

117

www.manaraa.com

13. E-mail address (optional):

If you would like to receive the survey report, please enter your e-mail address.

14. If you would not like us to contact you for clarification purposes, please uncheck this

box.

• Yes, contact me for clarification purposes

15. If you would like to add another lesson, please check the following box:

• Yes, I have another lesson to share!

118

www.manaraa.com

Appendix C: Results of the Empirical Study: Elicited Lessons

This appendix includes the result of the systematic literature review we conducted to elicit

lessons from the RE literature. In Chapter 6 we listed 3 from the literature of year 2011 and 3

from 2012. The complete list of lessons (209 lessons) are listed below.

It is important to note that most of the values in the lesson (mainly explicit lessons), ratio-

nale, and impact attributes have been included word-by-word from their sources, which are

cited at the beginning of each lesson. Some values for the application domain and project size

attributes have also been included exactly as mentioned in their sources.

Elicited Lessons:

Lesson ID: LL01 11 [Gonzales and Leroy, 2011]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Augment existing elicitation processes with the Appreciative Inquiry to elicit require-

ments.

Source: Case study, controlled experiment, quasi-experiment

Rationale: For decades and still today, software development projects have failed because they

do not meet the needs of users, are over-budget, and abandoned. To help address this problem,

the user requirements elicitation process was modified based on principles of Appreciative In-

quiry.

Impact: Appreciative Inquiry demonstrated benefits to the requirements gathered by increasing

the number of unique requirements as well as identifying more quality-based (non-functional)

119

www.manaraa.com

and forward-looking requirements. It worked best when there was time for participants to re-

flect on the thought-provoking questions and when the facilitator was knowledgeable of the

subject-matter and had extra time to extract and translate the requirements. The participants

(end-users and developers) expressed improved project understanding. End- users partici-

pated consistently with immediate buy-in and enthusiasm, especially those users who were

technically-inhibited. Appreciative Inquiry can augment existing methods by presenting a pos-

itive and future aspect for a proposed system resulting in improved user requirements.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Teacher online community, retail websites, campus website

Project size: Controlled experiment: men (10) and women (15)

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: California State Polytechnic

Repeatability: 4 studies

Lesson ID: LL02 11 [Sim and Alspaugh, 2011]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use humanities analysis techniques to analyse data elicited using the War Stories ap-

proach.

120

www.manaraa.com

Source: Qualitative study

Rationale: When analyzing data elicited using the war stories technique, previously introduced

by Lutters and Seaman, we encountered unexpected challenges in applying standard qualita-

tive analysis techniques. After reviewing the literature on stories and storytelling, we realized

that a richer analysis would be possible if we accorded more respect to the datas structure and

nature as stories, rather than treating our participants utterances simply as textual data.

Impact: Allowed us to preserve more of the story structure.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Practitioners from industry and academia

Project size: A total of 34 requirements engineers agreed to participate in the study. Partici-

pants came from the following three groups: 14 attendees at the 2006 International Require-

ments Engineering Conference (RE06), 15 practitioners at Intuit, Inc. in San Diego, and 5

practitioners from elsewhere in Southern California.

RE Practice: Using War Stories approach

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time qualitative study results

Lesson ID: LL03 11 [Dieste and Juristo, 2011]

Journal: TSE

Conference: N/A

Workshop: N/A

121

www.manaraa.com

Year: 2011

Lesson: Use unstructured interviews to elicit requirements.

Source: Systematic review

Rationale: Some experiences suggest that elicitation techniques are more or less equivalent

for simple and well-defined problems. For real problems though, a number of studies suggest

that elicitation techniques are not interchangeable, and there are far-reaching differences with

regard to what type of knowledge each technique can uncover. Other aspects, like quantity

of information or elicitation efficiency, are features that might distinguish one elicitation tech-

nique from another.

Impact: Unstructured interviews (although it is reasonable to assume that the same applies

to structured interviews), are equally as or more effective than introspective techniques (such

as protocol analysis) and sorting techniques. Unstructured interviews output more complete

information than retrospective techniques (such as protocol analysis) sorting techniques and

laddering. Unstructured interviews (although it is reasonable to assume that the same applies

to structured interviews), are less efficient than sorting techniques and Laddering, but as effi-

cient as introspective techniques (such as protocol analysis).

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: General

Project size: Selected and extracted data from 26 of those publications. The selected publica-

tions contain 30 empirical studies. These studies were designed to test 43 elicitation techniques

and 50 different response variables. We got 100 separate results from the experiments. The ag-

gregation generated 17 pieces of knowledge about the interviewing, laddering, sorting, and

protocol analysis elicitation techniques.

RE Practice: Interviews

RE Phase: Elicitation

122

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: N/A

Lesson ID: LL04 11 [Dieste and Juristo, 2011]

Journal: TSE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Do not use introspective techniques (such as protocol analysis) for eliciting require-

ments.

Source: Systematic review

Rationale: Some experiences suggest that elicitation techniques are more or less equivalent

for simple and well-defined problems. For real problems though, a number of studies suggest

that elicitation techniques are not interchangeable, and there are far-reaching differences with

regard to what type of knowledge each technique can uncover. Other aspects, like quantity

of information or elicitation efficiency, are features that might distinguish one elicitation tech-

nique from another.

Impact: They are the worst of all tested techniques in all dimension (effectiveness, efficiancy,

completeness) and are outperformed by unstructured interviews (although it is reasonable to

assume that the same applies to structured interviews) and some sorting techniques and ladder-

ing.

Target Object: Technique/method

Type: Negative

Expression: Implicit

123

www.manaraa.com

Application Domain: General

Project size: Selected and extracted data from 26 of those publications. The selected publica-

tions contain 30 empirical studies. These studies were designed to test 43 elicitation techniques

and 50 different response variables. We got 100 separate results from the experiments. The ag-

gregation generated 17 pieces of knowledge about the interviewing, laddering, sorting, and

protocol analysis elicitation techniques.

RE Practice: Protocol analysis

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: N/A

Lesson ID: LL05 11 [Kamalrudin et al., 2011]

Journal: N/A

Conference: ICSE

Workshop: N/A

Year: 2011

Lesson: Use Kamalrudin’s et al. tool to check for requirements consistency, correctness and

completeness between requirements representations.

Source: End user study

Rationale: Requirements specifications need to be checked against the 3Cs - Consistency,

Completeness and Correctness in order to achieve high quality. This is especially difficult

when working with both natural language requirements and associated semi-formal modelling

representations.

Impact: Low-level inconsistency problems can be identified such as natural language phrases

124

www.manaraa.com

without matching semi-formal model elements and meta-model constraint violations of the

extracted model. Higher-level problems, including inconsistency, incompleteness and incor-

rectness can be identified by comparing the semi-formal model to the Essential interaction

pattern and to the best practice examples of EUC interaction pattern templates. A visual differ-

encing technique highlights differences between the pattern template and EUC model. Modifi-

cations to EUC, abstract interaction and natural language requirements representations are also

supported with consistency management support between the different representations. most

participants finding our tool to be useful for improving quality and managing consistency of

requirements.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: University

Project size: Participants in the study were 11 software engineering post- graduate students,

several of whom had previously worked in industry as developers and/or requirements engi-

neers.

RE Practice: Semi-automated checking

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time end user study results Lesson ID: LL06 11 [Borges et al., 2011]

Journal: N/A

Conference: ICSE

Workshop: N/A

Year: 2011

125

www.manaraa.com

Lesson: Use Borges’ et al. tool for adapting and evolving software requirements models that

uses model checking and machine learning techniques for verifying properties and evolving

model descriptions.

Source: Case study

Rationale: The specification process still involves considerable human-centered efforts, which

are notably error and inconsistency-prone. Errors may occur in different phases of the process,

from the requirements specification through to the design and actual specification and imple-

mentation of the software models. When specification errors or inconsistencies are found,

current tools provide limited information about what should be rectified in the system being

developed.

Impact: Unifying, in a robust and sound process, the verification of properties of a given

model, the evolution of this model according to such properties, and the possibility of adapting

this knowledge model from the observation of an actual system. First, the framework is capa-

ble of coping with errors in the specification process so that performance degrades gracefully.

Second, the framework can also be used to re-engineer a model from examples only, when an

initial model is not available.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Pump system

Project size: N/A

RE Practice: N/A

RE Phase: Verification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

126

www.manaraa.com

Repeatability: First time evaluating case study results

Lesson ID: LL07 11 [Li et al., 2011]

Journal: N/A

Conference: ICSE

Workshop: N/A

Year: 2011

Lesson: Use Li’s et al. domain specific requirements model to elicit requirements in scientific

computing projects.

Source: Exploratory experiment

Rationale: There is a need for methodologies, which capture requirements for scientific com-

puting projects, because traditional requirements engineering methodologies are difficult to

apply in this domain.

Impact: They found this approach of modeling requirements very suitable for their domain

as they can easily understand the terminology and it is very easy to identify the relationship

between a requirement and how it evolves from the theoretical model. This domain specific

requirements model allows them to capture the rationale behind a given requirement and helps

them to discover open issues. Firstly, a requirements model is at a higher level of abstrac-

tion than a textual requirements specification. Models can support traceability, reusability and

extensibility. Therefore, it can better deal with complexity and change. Secondly, a domain

specific model provides abstractions and notations targeted at the specific domain. This makes

modeling less complicated and reduces the learning effort for scientists. The model facilitates

the communication across the domain boundary between the scientific computing domain and

the software engineering domain. It promotes software engineering in scientific computing

projects.

Target Object: Technique/method

Type: Positive

127

www.manaraa.com

Expression: Implicit

Application Domain: University

Project size: Five developers from four different research projects participated in the experi-

ment. Three of them are Ph.D students, while two have already received their Ph.D and are

continuing their work as scientific researchers.

RE Practice: Modeling

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL08 11 [Kof and Penzenstadler, 2011]

Journal: N/A

Conference: N/A

Workshop: REEW

Year: 2011

Lesson: Use a NLP approach with a CASE tool to generate a requirement model from a natural

language requirements document.

Source: Case study

Rationale: Despite the fact that documents are mostly written in natural language, natural lan-

guage processing (NLP) is barely used in industrial requirements engineering. Trade-offs of

the existing NLP approaches hamper their broad usage: existing approaches either introduce

a restricted language and, correspondingly, are able to process solely this restricted language,

or, in the case of a non-restricted language, they cannot adapt to different writing styles, often

co-existent in a single requirements document.

128

www.manaraa.com

Impact: Efficient analysis and early construction: Given a textual requirements document, it

helps to explore the document and to construct a system model. Automated tracing: When

constructing the model, it maintains explicit traces between the model and the textual docu-

ment. Early verification of requirements documents: If the model description in the document

is incomplete, it makes this incompleteness apparent, by creating an incomplete system model.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Steam boiler, auto pilot, bay area rapid transit and instrument cluster

Project size: N/A

RE Practice: Modeling

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL09 11 [Boutkova, 2011]

Journal: N/A

Conference: N/A

Workshop: REEW

Year: 2011

Lesson: Use the Feature Based Variability Management approach with DOORS to document

and manage variability.

Source: Industrial experience

Rationale: A problem for the application of the feature modelling approach in requirements

129

www.manaraa.com

specification is a lack of tool support. An analysis of the existing tools shows some deficiencies

that render these tools unsuitable for the needs of Daimler passenger car development (Daimler

PCD).

Impact: The new approach allows creating of a new specification for a product variant within

15-30 minutes. Therefore the novel approach radically reduces the time effort for creating vari-

ant specifications. (1) The reduction of the time effort for creating the variant specifications.(2)

The know-how about reasons for the variability.(3) Independence from a specific requirements

management tool.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Passenger car development

Project size: There are about 400 technical requirements. In the initial specification all re-

quirements are mapped to the next three car models.

RE Practice: Modeling

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Daimler PCD

Repeatability: First time industrial experience

Lesson ID: LL010 11 [van Tuijl et al., 2011]

Journal: N/A

Conference: N/A

Workshop: REEW

Year: 2011

130

www.manaraa.com

Lesson: Use the Bubblesort prioritization technique instead of the Analytical Hierarchy Pro-

cessing (AHP) technique.

Source: Experiment, questionnaire

Rationale: Software vendors often face the difficult task to deal with large amounts of require-

ments that enter the company every day. When dealing with this vast amount of requirements,

the notion of deciding which requirements will be addressed first, and which will be addressed

later, is an important decision. To support software development teams in decision-making,

different prioritization techniques are discussed in previous literature.

Impact: Bubblesort outpaced AHP on all aspects in terms of usability, time consumption and

perceived reliability.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

Project size: Twelve students. We created a list of twenty requirements for a widely used web-

based software package, called Google Maps.

RE Practice: N/A

RE Phase: Prioritisation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Utrecht University

Repeatability: First time experiment results

Lesson ID: LL011 11 [Helferich and Mautsch, 2011]

Journal: N/A

Conference: N/A

131

www.manaraa.com

Workshop: RePriCo

Year: 2011

Lesson: Use the Quality Function Deployment Product Portfolio Planning (QFD-PPP) method

to prioritize requirements and and customer segments.

Source: Case study

Rationale: Where different customers requirements are relatively similar but diverse when an-

alyzed in further detail, offering a number of distinct variants of the software package can be

beneficial. A large number of software development techniques have been developed to cope

with this complexity. Still, every variant developed results in additional effort.

Impact: Enables software companies to base decisions on core and variable assets on ac-

tual customer needs and therefore assists in controlling product (and especially architectural)

complexity. A segment formed using traditional marketing methods was too broad and that a

value-based analysis helped defining optional modules that can be offered to the customers.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Datacenter operations

Project size: 71 customer requirements, which were divided into 12 requirement categories.

RE Practice: N/A

RE Phase: Prioritisation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL012 11 [Loconsole et al., 2011]

132

www.manaraa.com

Journal: N/A

Conference: N/A

Workshop: RePriCo

Year: 2011

Lesson: Use the MAAD (Method for Agile, Automated and Distributed prioritization) an al-

gorithmic prioritization method for requirements prioritisation.

Source: Case study

Rationale: Prioritisation can be very time consuming, especially when dealing with large

amounts of information. During the prioritisation process both short-term and long-term ef-

fects of information items such as requirements, tasks and requests must be evaluated. This

is particularly complicated if the items affect each other. Another issue when performing the

prioritization is that the knowledge required to prioritize usually is distributed among several

persons, for instance employees and customers.

Impact: MAAD prioritisation was easier- to-use, less time-consuming, more accurate, more

scalable and the prioritization method most suitable for Flygprestanda compared to Wiegers

method and the prioritization method used at the company.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Aviation

Project size: Currently about 7000 to 10000 requirements and change requests are handled

each year, distributed over a few hundred software and service projects. The participants were

chosen in order to have different project roles represented: two customers, one manager and

three developers.

RE Practice: N/A

RE Phase: Prioritisation

Software Process: Agile in the sense of iterative work, relatively short release cycles and a

133

www.manaraa.com

clear focus on producing code rather than extensive documentation

Project Date: N/A

Recording Date: N/A

Organisation Name: Flygprestanda AB

Repeatability: First time evaluating case study results

Lesson ID: LL013 11 [El-Sharkawy and Schmid, 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use Sharkawy’s et al. heuristic approach to support creativity in requirements engi-

neering.

Source: Controlled experiment

Rationale: The core problem in product innovation is creativity. It provides the basis for in-

novation and all other steps in innovation build on this. Thus, in order to improve product

innovation, we must support people in being more creative.

Impact: We did show effectively that not only our approach does work, it is also more effective

than an approach relying on random triggers.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 11 people were assigned to group 1 and 9 people to group 2.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

134

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL014 11 [Mahaux et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: For stakeholder analysis, one could augment the checklists with environment related

roles.

Source: Exploratory study

Rationale: Sustainability has become one of the grand challenges of our civilisation. Because

of their pervasiveness, the way we design, and consequently use, software-intensive systems

has a significant impact on sustainability. This gives software requirements engineering an im-

portant role to play in society.

Impact: This enabled us to imagine desired and undesired customer-oriented scenarios focus-

ing on the sustainability aspect.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Event management

Project size: Seven employees Belgian company

RE Practice: N/A

RE Phase: Stakeholder analysis

Software Process: N/A

135

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: Yellow Events

Repeatability: First time exploratory results

Lesson ID: LL015 11 [Mahaux et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: For context modeling, one could chose a model that will enable to think about the

system as a whole in its environment-at-large, and show the physical flows, not only the infor-

mation flows, coming to or from the product.

Source: Exploratory study

Rationale: Sustainability has become one of the grand challenges of our civilisation. Because

of their pervasiveness, the way we design, and consequently use, software-intensive systems

has a significant impact on sustainability. This gives software requirements engineering an im-

portant role to play in society.

Impact: It helped a lot in understanding the problem, including the important environmental

dimension. This model shifted the focus from the product to its wider environment and helped

the authors consider where the impacts on sustainability might be.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Event management

Project size: Seven employees Belgian company

RE Practice: Modeling

136

www.manaraa.com

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Yellow Events

Repeatability: First time exploratory results

Lesson ID: LL016 11 [Mahaux et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: For goal modeling, one could prepare and instantiate a generic sustainability goal

model.

Source: Exploratory study

Rationale: Sustainability has become one of the grand challenges of our civilisation. Because

of their pervasiveness, the way we design, and consequently use, software-intensive systems

has a significant impact on sustainability. This gives software requirements engineering an im-

portant role to play in society.

Impact: This helped defining more precisely what sustainability meant for Yellow, to complete

the list of impacts and possible means of action. Some new insights were found, like the pos-

sible contribution to compensation programs, leading to new requirements.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Event management

Project size: Seven employees Belgian company

137

www.manaraa.com

RE Practice: Modeling

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Yellow Events

Repeatability: First time exploratory results

Lesson ID: LL017 11 [Mahaux et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: For use case analysis, one could investigate risks and mitigations through misuse cases

directed at sustainability threats.

Source: Exploratory study

Rationale: Sustainability has become one of the grand challenges of our civilisation. Because

of their pervasiveness, the way we design, and consequently use, software-intensive systems

has a significant impact on sustainability. This gives software requirements engineering an im-

portant role to play in society.

Impact: Consists of various functional modules and allowed to phase the project. the question

of the possible ways to mitigate the identified harm (typically a new detailed use case or a

modification to an existing one) brought the project one step further towards the design of a

solution.

Target Object: Technique/method

Type: Positive

Expression: Explicit

138

www.manaraa.com

Application Domain: Event management

Project size: Seven employees Belgian company

RE Practice: Using use cases

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Yellow Events

Repeatability: First time exploratory results

Lesson ID: LL018 11 [Adam, 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use the ’match early approach’ only in contexts in which people stating requirements

and people mapping requirements to service infrastructures are distributed spatially and tem-

porally.

Source: Industrial case study

Rationale: Achieving a tight fit between requirements and reusable assets is not the usual case

in practice, even if especially SOA makes such promises. The very early consideration of ex-

isting services and their alignment with requirements have therefore been recommended by

several references, as otherwise the fit will rather depend on luck.

Impact: The match early approach was an efficient means for performing elicitation work-

shops. We expect this observation to be the main advantage of match early, as requirements

elicitation is typically not integrated with reuse infrastructure matching in todays practice (un-

fortunately, this setting could not be constructed in a controlled experiment).

139

www.manaraa.com

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Public safety project

Project size: The platform functionality included around 170 functions and was encapsulated

in 17 CSD.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: German Police and Fire Station

Repeatability: First time case study results. The results are not supported by results of the

controlled experiment.

Lesson ID: LL019 11 [Gervasi and Zowghi, 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use machine learning techniques to mine requirements traces.

Source: Experiment

Rationale: While most research is concerned with ways to reduce the effort needed to establish

and maintain traceability links, a different question can also be asked: how is it possible to har-

ness the vast amount of implicit (and tacit) knowledge embedded in already-established links?

Is there something to be learned about a specific problem or domain, or about the humans who

establish traces, by studying such traces?

140

www.manaraa.com

Impact: The additional knowledge gained could be used to help familiarize with an unknown

domain, to shed some light on refinement decisions, to understand linking policies, or in the

end to obtain a more accurate semi-automatic linking of new or changed requirements based

on previous history.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Publicly-available dataset of requirements with traceability information,

originally based on the CM-1 project by the NASA Metrics Data Program

Project size: 235 high-level SRS (software requirements specification) which are refined to

220 low-level SDS (software design specification) for the same DPU (data processing unit);

361 manually-verified links relate the two sets and, so to say, tell the story of the refinement

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: NASA

Repeatability: First time case study results.

Lesson ID: LL020 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Trace features to product drivers and business goals.

Source: Industrial case study

141

www.manaraa.com

Rationale: Misbalance between technology-driven and market-driven requirements.

Impact: Ensure effectiveness of requirements management.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL021 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Apply Workflow driven Feature Model with sellable units and sufficient granularity.

Source: Industrial case study

Rationale: Missing requirements prioritisation process and constant requirements overload.

Impact: Efficient requirements elicitation and negotiation, ensure common product view.

Target Object: Technique/method

142

www.manaraa.com

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: N/A

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL022 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Simplify tracing by specifying hierarchical relationships between requirement arti-

facts.

Source: Industrial case study

Rationale: Insufficient traceability.

Impact: Less effort for requirement authors by simplified structure, avoidance of tracing er-

rors.

Target Object: Technique/method

Type: Positive

143

www.manaraa.com

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL023 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use Feature Model to Family Model mapping. Ensure clear hierarchy of requirement

objects.

Source: Industrial case study

Rationale: Intransparent mapping between problem and solution space.

Impact: Early impact analysis and estimations, support of project management.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

144

www.manaraa.com

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL024 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use optimized review concept, (review of solution specs at feature completion).

Source: Industrial case study

Rationale: Inefficient review of detailed specs upfront.

Impact: Saving of review effort by consideration of iterative changes to specifications.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

145

www.manaraa.com

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL025 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use MVP, priority based iterative, just-in-time preparation of feature specs.

Source: Industrial case study

Rationale: Waterfall approach, many handoffs, work in progress, missing feedback loops.

Impact: Avoidance of waste, flexibility to react on changes, risk reduction.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: N/A

RE Phase: Prioritisation

Software Process: N/A

146

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL026 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Administer single requirement artifacts (CM for RE objects).

Source: Industrial case study

Rationale: Specification based RE, possibility of inconsistencies across product versions.

Impact: Version and change management for requirement artifacts, enabling shorter release

cycles.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

147

www.manaraa.com

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL027 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Model feature variability upfront.

Source: Industrial case study

Rationale: No proactive variant management and no support for reuse.

Impact: Easy generation of variants, support of R&D platform strategy.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

148

www.manaraa.com

Lesson ID: LL028 11 [Markov et al., 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Minimize separation of phases and work streams.

Source: Industrial case study

Rationale: N/A

Impact: Intermediate results may not be accepted between teams.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Development, maintenance, and enhancement of a software platform

providing core assets to developers of other organizations.

Project size: From project initiation to project completion, the improvement effort took almost

two years and was supported by a team of requirements engineering experts.

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time industrial case study results

Lesson ID: LL029 11 [Knauss et al., 2011]

Journal: N/A

Conference: REFSQ

149

www.manaraa.com

Workshop: N/A

Year: 2011

Lesson: Use Bayesian classifier to elicit and analyse security requirements.

Source: Experiment

Rationale: Ignoring security issues early in a project is a major source of recurring security

problems in practice. Identifying security-relevant requirements is labour- intensive and error-

prone. Security may be neglected in order to finish on time and in budget.

Impact: This can increase security awareness within the software development process. The

approach succeeds in assisting requirements engineers in their task of identifying security-

relevant requirements, in that it reliably identifies the majority of the security-relevant require-

ments (recall ¿ 0.9) with only few false positives (precision ¿ 0.8) in software evolution sce-

narios. Our evaluation of different training strategies shows that the classifier can quickly be

adopted to a new domain when no previous versions of requirements specifications are avail-

able for training. This could be done by a security expert during a first interview. we achieved

very good results in cases where the classifier is applied to the requirements from the same

source as it was trained with. We also observed poor results in cases where the classifier was

applied to a different requirements specification than the one it was trained with.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: The Common Electronic Purse Specification (ePurse), the Customer

Premises Network specification (CPN), and the Global Platform Specification (GP)

Project size: Three industrial requirements documents for evaluation; Common Electronic

Purse (ePurse): 124 requirements and 83 security relevant requirements. Customer Premises

Network (CPN): 210 requirements and 41 security relevant requirements. Global Platform

Spec. (GP): 176 requirements and 63 security relevant requirements.

RE Practice: N/A

150

www.manaraa.com

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experiment results

Lesson ID: LL030 11 [Veerappa and Letier, 2011]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2011

Lesson: Use cluster analysis techniques used in the area of market segmentation for identify-

ing relevant groups of stakeholders to be used for requirements decision making.

Source: Pilot case study

Rationale: Novel web-based requirements elicitation tools offer the possibility to collect re-

quirements preferences from large number of stakeholders. Such tools have the potential to

provide useful data for requirements prioritisation and selection. However, existing require-

ments prioritisation and selection techniques do not work in this context because they assume

requirements ratings from a small number of stakeholders groups, rather than from a large

number of individuals. They also assume that the relevant groups of stakeholders have been

identified a priori, and that all stakeholders within a group have the same preferences.

Impact: There is an improvement in overall closeness of the ratings used to make decisions

when using cluster analysis.

Target Object: Technique/method

Type: Positive

Expression: Implicit

151

www.manaraa.com

Application Domain: University

Project size: Carried out a survey at UCL asking 50 potential stakeholders to rate 5 require-

ments R1, R2, R3, R4 and R5 for an online calendar on a 10 point scale. We obtained responses

from 47 stakeholders

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: UCL

Repeatability: First time pilot case study results

Lesson ID: LL031 11 [Gacitua et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use relevance-based abstraction identification (RAI) technique(RAI-1 tool) to auto-

matically identify abstraction.

Source: Experiment

Rationale: When first approaching an unfamiliar domain or requirements document, it is of-

ten useful to get a quick grasp of what the essential concepts and entities in the domain are.

This process is called abstraction identification, where the word abstraction refers to an entity

or concept that has a particular significance in the domain. Abstraction identification has been

proposed and evaluated as a useful technique in requirements engineering (RE). Identifying ab-

stractions from such (often large) documents imposes a high cognitive load on the requirements

engineer. Attention lapses, for example, can result in important abstractions being overlooked.

152

www.manaraa.com

To support RE, therefore, . . . the desire is for a clerical tool that helps with the tedious, error-

prone steps of what a human elicitor does . . .

Impact: In the context of the RFID book evaluation, there is a clear performance advantage to

RAI-1 over AbstFinder and C-value. Moreover, the effect of the modifications made to RAI

that led to RAI-1 have been dramatic. RAI-1 performs much better than RAI-0 in all our met-

rics; absolute recall and precision, the rate of increase in recall and rate of decline in precision,

and in lag.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Textbook on RFID and its applications

Project size: The book is large enough to present a real problem of information overload. It

is 595 pages long and contains 156,028 words so its size serves to simulate the volume of text

that a requirements engineer might encounter in a range of domain materials such as standards,

manuals or indeed text books. The books analytical index holds 911 entries.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL032 11 [Liaskos et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

153

www.manaraa.com

Year: 2011

Lesson: Use Liaskos’ et al. extended state-of-the-art goal modeling notation to support the

representation of preference (nice- to-have) requirements.

Source: Experiment

Rationale: Current goal-oriented modeling frameworks treat goals as mandatory requirements

that must be fulfilled by any proposed solution. In this respect, such frameworks cannot ac-

commodate preference (nice-to-have) requirements that might be posed by stakeholders.

Impact: Our experiments indicate that the task of reasoning about preferences and alternatives

allows better under- standing of the connection between the stakeholder attitudes and alterna-

tive designs. This makes it particularly useful for exploring alternative designs during early re-

quirements stages, supporting priority elicitation activities by directly showing the implication

of certain prioritisations, improving domain understanding and model accuracy, or, potentially,

supporting the customization of software systems by connecting the high-level design descrip-

tions obtained through the tool into configurations of variation points in the software itself.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: The health care domain, involving nursing processes, the ATM domain,

exploring different behavioral designs for an automated teller machine, and the classic meeting

scheduler domain, investigating different ways to schedule meetings

Project size: The nursing domain (24 mandatory elements 11 of which tasks plus 7 quality

preferences), an extended meeting scheduling example (53 mandatory elements, 32 tasks, 13

quality preferences) as well as the ATM example (28 mandatory elements, 21 tasks, 4 quality

preferences)

RE Practice: Modeling

RE Phase: Prioritisation

Software Process: N/A

154

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL033 11 [Mashkoor and Jacquot, 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use Event-B for domain engineering.

Source: Industrial experience

Rationale: Well-specified requirements are crucial for good software design; they depend on

the understanding of the domain. Thus, domain engineering becomes an essential activity. The

possibility to have a formal model of a domain, consistent with the use of formal methods for

developing critical software working within it, is an important issue. Safety-critical domains,

like transportation, exhibit interesting features, such as high levels of nondeterminism, com-

plex interactions, stringent safety properties, and multifaceted timing attributes. The formal

representation of these features is a challenging task. Most customers express their require-

ments either in natural language or in terms of scenarios. Most of the requirements engineering

methodologies are therefore nonformal or semi formal. One of the problems with less formal

techniques is that they may be ambiguous, which makes the requirements engineering phase

error prone.

Impact: Event-B is an adequate language for domain engineering

Target Object: Tool

Type: Positive

Expression: Explicit

155

www.manaraa.com

Application Domain: Transportation systems

Project size: Our current domain model contains one abstract machine and seven refinements.

In parallel with the machines, two contexts are being refined. The first is the context Net, which

models the static properties of the network (its topology, quantities associated to its elements,

etc.). The second is the context StartState, which helps to set and prove the INITIALISATION

event of the machines.

RE Practice: Modeling

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time industrial experience

Lesson ID: LL034 11 [Sutcliffe et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use a mix of designer-led initiative using HCI patterns and user-centred design that

responded to user requirements for requirements engineering.

Source: Case study

Rationale: User interfaces (UI) and HCI are direct concerns of requirements engineering rather

than a veneer of interactive components that adorn the software system. For example, many

requirements for decision-support systems can only be considered in terms of user interaction,

while functionalities of the user interface are first-order requirements that serve user goals, e.g.,

functional requirements to interactively explore information spaces, virtual worlds and social

156

www.manaraa.com

networks.

Impact: The mix of designer-led initiative using HCI patterns and user-centred design that

responded to user requirements worked well. HCI influenced the requirements specification

process as well as the consequent requirements for the ADVISES project in three ways. First,

the scenario-based process facilitated exploration of users requirements and, more importantly,

their design realisation. This enabled users to contribute to developing a software specification

which would change their work practices. Experience with a similar user-centred development

approach was reported by Maiden and Robertson. The second influence was application of

functional allocation as a means of refining the functional requirements and user interface ar-

chitecture. The functional allocation heuristics which proved to be useful in ADVISES could

be applied in RE approaches when different system implementations are being considered; for

example, when strategic rationale models are created to explore alternative implementation

boundaries in strategic dependency i* models. The third influence was application of HCI

knowledge in the form of principles and patterns, in particular as solutions to visualisation

problems. HCI knowledge was supplied by the first author, supplemented by HCI design pat-

terns literature. HCI requirements based on the gaps problems stimulated the visualisation

design as well as pointing towards the patterns solution, e.g., multiple displays enable differ-

ent users to scan the maps and graphs according to their needs. Linking research questions to

display templates supports the users workflow more directly, by providing the necessary in-

formation related to the users tasks. Although concurrent multipanel displays may appear to

increase complexity, none of our users complained about the displays being too complex.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Visualisation tools to support epidemiological research and public health

decision-making

Project size: N/A

157

www.manaraa.com

RE Practice: N/A

RE Phase: Analysis, specification

Software Process: Iterative

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL035 11 [Sutcliffe et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use the the combination of storyboards, scenarios and prototypes integrated in a user-

centred design cycle for requirements engineering.

Source: Case study

Rationale: N/A

Impact: The key to user engagement. Visualisation of realistic designs enabled the users to

critique and contribute ideas in their own terms without understanding software engineering

notations. Our experience has been that even simple notations such as use cases present a bar-

rier to understanding; furthermore, abstract models are less meaningful for users.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Visualisation tools to support epidemiological research and public health

decision-making

Project size: N/A

158

www.manaraa.com

RE Practice: Using storyboards, scenarios, prototypes

RE Phase: Analysis, specification

Software Process: Iterative

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL036 11 [Ballejos and Montagna, 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use Ballehos’ et al. integrated model for representing and managing stakeholder-

related concepts in the development of an information system.

Source: Case study

Rationale: In the software engineering area, stakeholders play a significant role in require-

ments elicitation and validation. Moreover, all the project management is integrally affected

by stakeholders perspectives and their participation. This effect is strengthened when projects

involve several organizations. Thus, a clear and explicit representation of the stakeholders and

their attributes is required in order to achieve their effective management. The integration of

this representation with other models capturing the knowledge of engineering design processes

can be of great utility in software development projects.

Impact: The model helped shaping the planning and implementation of the design process, in

whose progress stakeholders were interested and involved and also contributed to the effective

project team leadership, organizing stakeholder-related information. Through the stakeholders

modeling, a range of significant issues were revealed that would not otherwise have surfaced

159

www.manaraa.com

until implementation of the system and therefore too late to resolve without major wastage

of resources. For example, information regarding the most interested and influencing stake-

holders can be checked during the process. These stakeholders are the ones that will be really

conducting the process, influencing decisions or, perhaps, making them. The use of the model

significantly increased the chances to guarantee an appropriate and consistent level of stake-

holder information representation in the project, since the particular roles and power types of

the specific project were instantiated.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Public health area of an Argentinean province

Project size: N/A

RE Practice: Modeling

RE Phase: Stakeholder analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL037 11 [Pitula and Radhakrishna, 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Elicit requirements by applying Structured Digital Story- telling (SDS) to elicit needs

directly from the end-users and apply a conceptual model of experiential culture to interpret

160

www.manaraa.com

these needs and additional constraints arising from the broader social context.

Source: Case study

Rationale: In many developing countries, a growing effort is under- way to provide disadvan-

taged people in rural areas with access to digital content and services using Information and

Communication Technologies (ICT). Such efforts are referred to by the term ICT for Develop-

ment or ICT4D. Although numerous pilot projects have been attempted over the past decades,

few have managed to bring long- term sustained benefits to the people that they target.

Impact: All the participants were able to tell their story and were enthusiastic about doing

so. Villagers participated readily and quickly picked up the operation of the application. Once

they began talking, they became engaged in telling their story and were not distracted by the

mechanics of recording. While in almost all cases they participated in groups, their stories

were highly personal and did not show any signs of groupthink. At the same time, the group

provided an audience for the teller, making the narration a natural communicative exchange.

Our analysis of the stories indicates that they are highly useful in identifying the participants

concerns and reveal an abundance of contextual information.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain:Information and Communication Technologies (ICT) such as mobile

phones, to assist in reducing disparities in socioeconomic conditions throughout the world.

Such efforts have come to be known as ICT for Development or ICT4D

Project size: Altogether 30 stories were collected, 17 on farming and 13 on higher education.

These were told by both male and female participants represent- ing a broad age range, from

children to the elderly and a cross section of financial situations, from the very poor to those

considered well off by local standards.

RE Practice: N/A

RE Phase: Elicitation

161

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL038 11 [Luna et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use WebSpec, a domain-specific language for specifying the most relevant and char-

acteristic requirements of Web applications.

Source: Case study

Rationale: Web application development is a complex and time-consuming process that in-

volves different stakeholders (ranging from customers to developers); these applications have

some unique characteristics like navigational access to information, sophisticated interaction

features, etc. However, there have been few proposals to represent those requirements that are

specific to Web applications.

Impact: The customer liked the use of mockups and the simulation features of WebSpec as

they gave him a clear picture of the understanding of the analyst regarding the requirements.

On the other hand, some diagrams were rather complex (specially the list of actions) and thus

hard to understand by the customer. He suggested providing a simplified view of the diagram

in those cases. In the development team, the most appreciated feature was the test suite derived

directly from the diagrams. The test suite was used to asses whether the requirements were

correctly implemented during the development cycle and to check that new code did not break

existing functionality. The test suite grew quickly, and therefore, the time consumed to run the

162

www.manaraa.com

tests also grew. Finally, in the coding side, mockups and WebSpec diagrams help to implement

the requirement using the code derivation features (GWT effect handler) and were appreciated

by developers as it automates UI changes.

Target Object: Language, tool

Type: Positive

Expression: Implicit

Application Domain: Web development for the postgraduate area

Project size: The development team is composed of two developers, one analyst and a project

manager. The requirements were obtained from one person (the head of the college), thus

avoiding any conflict resulting between different stakeholders. The project was divided in

sprints (as in most agile approaches) in which we tackle a set of requirements delivering a

running application to the customer. In our case, we had six sprints to implement several user

stories though here we only show the first three sprints. Each sprint was delivered within 2

weeks, thus gathering quick feedback from the customer.

RE Practice: N/A

RE Phase: Specification

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: College of Medicine in the University of La Plata

Repeatability: First time evaluating case study results

Lesson ID: LL039 11 [Yue et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

163

www.manaraa.com

Lesson: An ideal approach for transforming requirements into analysis models would have

the following characteristics: (1) requirements should be easy to document using the format

required by the approach, (2) generated analysis models should be complete (i.e., contain struc-

tural and behavioral aspects of a system), (3) the approach should contain the least number of

transformation steps as possible (high efficiency), (4) the approach should be automated, and

(5) the approach should support traceability management.

Source: Systematic review

Rationale: Model transformation is one of the basic principles of Model Driven Architecture.

To build a software system, a sequence of transformations is performed, starting from require-

ments and ending with implementation. However, requirements are mostly in the form of text,

but not a model that can be easily understood by computers; therefore, automated transforma-

tions from requirements to analysis models are not easy to achieve.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: N/A

Project size: The systematic review led to the analysis of 20 primary studies (16 approaches)

obtained after a carefully designed pro- cedure for selecting papers published in journals and

con- ferences from 1996 to 2008 and Software Engineering textbooks.

RE Practice: Modeling

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: Systematic literature review results

164

www.manaraa.com

Lesson ID: LL040 11 [Asnar et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use the Goal-Risk framework for modeling and reasoning about risk during require-

ments analysis extending the Tropos goal modeling framework.

Source: Case study

Rationale: Risk analysis is traditionally considered a critical activity for the whole software

systems lifecycle. Risks are identified by considering technical aspects (e.g., failures of the

system, unavailability of services, etc.) and handled by suitable countermeasures through a

refined design. This, however, introduces the problem of reconsidering system requirements.

Impact: Positive experiences in communicating GR models to analysts and domain experts.

This is an important strength for any requirements analysis technique because it empowers

domain experts to under- stand and critique proposed models. Moreover, the learning process

for experts to understand and use a GR model takes relatively short period (approximately 23

months). The GR framework supports risk analysis during the very early phases of software

development. Consequently, it reduces the risk of requirements revision, and consequently the

cost of development. In comparison with KAOS, this framework allows analysts to perform

qualitative and quantitative assessment though KAOS provides richer formal semantics using

Linear Temporal Logic. Moreover, in comparison with DDP and CORAS the GR framework

is more expressive in capturing stakeholders intentions. At last, the GR framework is the only

framework that deals with risk and opportunity, since some risks appear because the stakehold-

ers decide to pursue an opportunity. With this feature, one can perform trade-off analysis to

decide whether one opportunity is worth to pursue or not.

Target Object: Technique/method

165

www.manaraa.com

Type: Positive

Expression: Implicit

Application Domain: Banking

Project size: N/A

RE Practice: Using a framework

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL041 11 [Pires et al., 2011]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2011

Lesson: Use Pires’ et al. multi-viewed RE process and ReTool for requirements elicitation,

analysis, specification and validation.

Source: Controlled experiment

Rationale: RE activities aim at managing all the requirements-related knowledge. It is com-

mon that such knowledge is concretized in a set of artifacts such as use cases, story boards,

natural language documents, and business process specifications. These artifacts comprise the

so-called Requirements Document. The production of such document is often regarded as one

of the most difficult activities in the software development process. The resources applied

in building a solid RE process have been shown to pay off. However, studies conducted by

renowned IT consulting groups as the Standish, the Gartner, and the Forrester groups have

166

www.manaraa.com

pointed out that a large number of projects still fail to achieve their goals and some of them are

even canceled due to requirements-related issues.

Impact: Accomplished analysis indicates the potential applicability of using RETool in the

RE process provided that sufficient training is given to the users. The results draw from our

experiment indicate that a clear communication channel between the teams involved in a RE

process minimizes most of the scope and communication issues, since both parts can express

their view about the system scope using a suitable notation. Moreover, the proposed process

and tool provide a simple, but useful, traceability scheme. The experiment also shown that the

proposed knowledge validation technique was effective to deal with volatility issues, once we

were able to track down requirements inconsistencies by using ontologies along with reasoning

mechanisms. Finally, the experiment shown that our approach correctly integrates the different

views that represent the RE knowledge, once no information was lost during the transforma-

tion.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Health Watcher system (HW) used in a University setting

Project size: Two (2) subjects. The subjects were Computer Science M.Sc. Students in their

second year, with basic knowledge in both requirements and software engineering. Second

project: 9 subjects

RE Practice: N/A

RE Phase: Elicitation, analysis, specification, validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Federal University of Rio Grande do Norte, University of Sydney

Repeatability: First time evaluating experiment results

167

www.manaraa.com

Lesson ID: LL042 11 [Gordon and Breaux, 2011]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2011

Lesson: Use Gordon’s et al. heuristics (union, disjoint, minimum) to resolve potential conflicts

or differences between requirements.

Source: Case study

Rationale: Increasingly, information systems are becoming distributed and pervasive, enabling

organizations to deliver services remotely to individuals and to share and store personal in-

formation worldwide. However, system developers face significant challenges in identifying

and managing the many laws that govern their services and products. the existing approach -

paper-based laws and policies - can no longer scale with technological innovation, and that the

regulations must be accessible to policy makers, business analysts, and software developers if

an honest expectation of compliance can be preserved.

Impact: We believe these heuristics can be applied to potential conflicts across regulatory

requirements to discover a legal landscape consisting of choices that system designers must

consider in the context of their products and services, business practices, internal policies,

preferences, and risk profiles.

Target Object: Language

Type: Neutral

Expression: Implicit

Application Domain: Regulatory requirements. Regulations from multiple jurisdictions

Project size: 5 laws: We selected the following laws by inviting suggestions from a legal expert

with seven years of privacy and security law expertise; additionally, Wisconsin was chosen due

to its unique inclusion of biometric data as personal information.

168

www.manaraa.com

RE Practice: N/A

RE Phase: Specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: AR: Personal Information Protection Act, Arkansas Chapter 4.110; 2005.

MA: Security Breaches, Massachusetts Chapter 93H; 2007. MD: Personal Information Pro-

tection Act, Maryland Subtitle 14-35; 2008. NV: Security of Personal Information, Nevada

Chapter 603A; 2006. WI: Notice of Unauthorized Access to Personal Information, Wisconsin

Chapter 134.98; 2006.

Repeatability: First time case study results

Lesson ID: LL043 11 [Uusitalo et al., 2011]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2011

Lesson: Use Easy Approach to Requirements Syntax (EARS) to write/rewrite domain require-

ments.

Source: Quasi-experiment

Rationale: Requirements of a system are gathered from various stakeholders, but especially

in safety critical application domains, such as the nuclear energy domain, public authorities

also impose requirements. Major parts of requirements are often written in natural language.

Despite being widely applied and a convenient means, natural language requirements have

deficiencies such as impreciseness and vagueness. One approach to improve especially exist-

ing requirements is to rewrite the requirements applying structured natural language templates

such as Easy Approach to Requirements Syntax (EARS).

169

www.manaraa.com

Impact: The presentation of the EARS- format requirements revealed that although the re-

sulted requirements were a natural interpretation of the original requirement, the results had

explicated some assumptions from the original document. The assumptions made by the re-

searcher were not correct, and this was seen to highlight the ambiguity of the sentences of YVL

B.1 that required domain knowledge to understand correctly. The application of EARS to RS-

RCSU was seen to somewhat clarify the original expressions in the document, but the reaction

of the panel was mild, probably because the document was not important to them.The panels

opinion was that there was utility in applying EARS into YVL B.1. The method appeared

relatively lightweight in terms of effort and learning required as compared to the benefits of

its application. The utility of applying EARS into RS-RCSU remained more uncertain. Even

though the results attained in improving the content of the document were promising, the panel

was unsure whether these results could be generalized to their own requirements specifications.

This uncertainty was due to the panel members not being familiar with the structure and con-

tent of RS-RCSU.

Target Object: Language

Type: Neutral

Expression: Implicit

Application Domain: Nuclear power plants

Project size: YVL 2.1 Safety classification of systems: 11 processed pages out of a total of 11

pages. YVL B.1 Safety Design of Nuclear Power Plant: 2 processed pages out of a total of 48

pages. Requirements Specification for Rod Control System Upgrade: A Generic Specification

for Westinghouse Pressurized Water Reactors (RS-RCSU): 74 processed pages out of a total

of 138 pages.

RE Practice: Using templates

RE Phase: Specification

Software Process: N/A

Project Date: N/A

170

www.manaraa.com

Recording Date: N/A

Organisation Name: Finnish public authority guidelines for nuclear safety (YVL)

Repeatability: Preliminary quasi-experiment results

Lesson ID: LL044 11 [Schmidt et al., 2011]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2011

Lesson: Use commitment, privilege, and right (CPR) analysis to identify legally compliant

requirements from data use agreements (DUAs).

Source: Case study

Rationale: Security and privacy requirements are often not explicitly stated and are often not

easy to elicit. Within the healthcare domain, regulations created pursuant to the U.S. Health

Insurance Portability and Accountability Act (HIPAA) specify that a DUA must exist for cer-

tain uses and disclosures of protected health information as a limited data set. For compliance

reasons, it is important for requirements engineers to ask for and evaluate DUAs, as they are

legally binding on the parties.

Impact: Through this grounded theory approach we found that both policy documents and

DUAs yielded CPR classifications. In contrast to policy documents, CPRs expressed in DUAs

convey the exchange of information between two contractual entities. Within our analysis of

four DUAs, we observed that DUAs contain mostly commitments. DUA requirements are

legally binding and thus critical to ensuring compliance.

Target Object: Technique/method

Type: Neutral

Expression: Implicit

Application Domain: Healthcare (HIPAA)

171

www.manaraa.com

Project size: Two policy documents and 4 DUAs

RE Practice: Using CPR analysis

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL045 11 [Schmidt et al., 2011]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2011

Lesson: Data use agreements (DUAs) are a good source of contractual compliance require-

ments for a system that manages limited data sets.

Source: Case study

Rationale: N/A

Impact: DUAs are signed by both parties and either create or extend a contractual relationship.

Most of the statements express recipient commitments, relating to the requirements of the re-

cipients system.

Target Object: Policy

Type: Positive

Expression: Explicit

Application Domain: Healthcare (HIPAA)

Project size: Two policy documents and 4 DUAs

RE Practice: N/A

172

www.manaraa.com

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL046 11 [Schmidt et al., 2011]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2011

Lesson: Natural language patterns within DUAs can be used to classify statements as CPRs

Source: Case study

Rationale: Even though DUAs are mentioned in HIPAA, most requirements engineers likely

would not know to ascertain whether a DUA exists when developing software requirements

for healthcare systems. For compliance reasons, it is important for requirements engineers to

evaluate DUAs, as they are legally binding on the parties.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Healthcare (HIPAA)

Project size: Two policy documents and 4 DUAs

RE Practice: N/A

RE Phase: Elicitation, analysis

Software Process: N/A

173

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL047 11 [Ohashi et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use Ohashi’s 2-step approach and tool for establishing traceability links between re-

quirements definition artifacts and design phase artifacts during the design phase.

Source: Experiment

Rationale: There are thousands of functions and screens in real business applications. It is

difficult to establish suitable links from these many elements. In addition, there is a constraint

that the workload of setting traceability links should be small. At software quality assurance,

artifacts of the software development process must satisfy several conditions. Customer re-

quirements should be traced in the corresponding design, to ensure that no excess specification

is designed. Furthermore, it must adapt to the changes in customers requirements.

Impact: In the case in which models were not used, the number of candidate links was 1209,

and when models were used the average number of candidate links was reduced to 201.5. In

the case in which categories were not used, the number of candidates was 397, and the time

needed to create a link was 23 sec/link. In the case of using categories, the average number of

candidates was 8.1, and time for setting was 15 sec/link.The number of candidates was reduced

to 1/6 by using models, and to 1/49 by using categories. Applying our approach resulted in a

sufficiently small enough number of candidate links, and sufficiently reduced time to be effec-

tive in real software development projects.

174

www.manaraa.com

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: Business Process (most detail): 72. System Function: 397. Screen:526. Slip:

145. Interface: 116. Conceptual Data: 53

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL048 11 [Chen et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use Chen’s et al. requirements-driven self- tuning method for the survivability assur-

ance of Web systems.

Source: Experiment

Rationale: Running in a highly uncertain and greatly complex environment, Web systems can-

not always provide full set of services with optimal quality, especially when work loads are

high or subsystem failures are frequent. Hence, it is significant to continuously maintain a high

satisfaction level of survivability, hereafter survivability assurance, while relaxing or sacrific-

ing certain quality or functional requirements that are not crucial to the survival of the entire

175

www.manaraa.com

system.

Impact: In each experiment with one of the three kinds of methods, we collected and an-

alyzed the average earned business value and the four qualities per minute in a continuous

running of about 77 minutes with different numbers of concur- rent users varying from 10 to

90. The quality and functional reasoning-2 mostly outperforms the static and quality reason-

ing method, and the quality and functional reasoning-0 mostly outperforms the static method

and partially outperforms the quality reasoning method.Adopting the quality and functional

reasoning-1 method, the response time is significantly improved compared to static method

and slightly improved compared to quality reasoning method; however, the usability is a little

reduced but is still acceptable since the usability for static, quality reasoning and quality and

functional reasoning-1 method are 10.0, 8.99 and 9.01 respectively. Similarly, availability is

improved while cost is increased.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Online shopping system

Project size: Randomly generated goal models whose sizes vary from 25 to 150.

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL049 11 [Massey et al., 2011]

Journal: N/A

176

www.manaraa.com

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: The average graduate- level software engineering student is ill-prepared to write

legally compliant software with any confidence and that domain experts are an absolute ne-

cessity.

Source: Case study

Rationale: Software engineers regularly build systems that are required to comply with laws

and regulations. To this end, software engineers must determine which requirements have

met or exceeded their legal obligations and which requirements have not. Requirements that

have met or exceeded their legal obligations are legally implementation ready, whereas require-

ments that have not met or exceeded their legal obligations need further refinement. Research

is needed to better understand how to support software engineers in making these determina-

tions.

Impact: N/A

Target Object: People

Type: Negative

Expression: Implicit

Application Domain: Healthcare (HIPAA)

Project size: Each case in our case study received three inputs: (1) a sample legal text; (2) a

requirements specification that includes a glossary of terms; and (3) a traceability mapping of

the individual requirements to the legal text. The legal text chosen for this study is a HIPAA

regulatory section governing technical safeguards. Instead of including all 75 iTrust system

requirements, we started with the 15 requirements with legal obligations outlined in HIPAA,

then iteratively applied our methodology for evaluating requirements for legal compliance to

the other iTrust system requirements. After three iterations, we identified an additional 17 re-

quirements for inclusion in our study. We selected one of our 32 requirements to be used as

177

www.manaraa.com

a part of the tutorial for providing basic training to participants about how software engineers

may reason about legal compliance. As a result, we had 31 remaining requirements to use in

our case study. The participants in our case study are 32 computer science graduate students

who have taken or are taking the graduate-level software engineering course

RE Practice: N/A

RE Phase: Elicitation, specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: North Carolina State University

Repeatability: First time case study results

Lesson ID: LL050 11 [Massey et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: The metrics used in the legal requirements triage algorithm are useful in identifying

LIR requirements.

Source: Case study

Rationale: Software engineers regularly build systems that are required to comply with laws

and regulations. To this end, software engineers must determine which requirements have

met or exceeded their legal obligations and which requirements have not. Requirements that

have met or exceeded their legal obligations are legally implementation ready, whereas require-

ments that have not met or exceeded their legal obligations need further refinement. Research

is needed to better understand how to support software engineers in making these determina-

tions.

178

www.manaraa.com

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Healthcare (HIPAA)

Project size: Each case in our case study received three inputs: (1) a sample legal text; (2) a

requirements specification that includes a glossary of terms; and (3) a traceability mapping of

the individual requirements to the legal text. The legal text chosen for this study is a HIPAA

regulatory section governing technical safeguards. Instead of including all 75 iTrust system

requirements, we started with the 15 requirements with legal obligations outlined in HIPAA,

then iteratively applied our methodology for evaluating requirements for legal compliance to

the other iTrust system requirements. After three iterations, we identified an additional 17 re-

quirements for inclusion in our study. We selected one of our 32 requirements to be used as

a part of the tutorial for providing basic training to participants about how software engineers

may reason about legal compliance. As a result, we had 31 remaining requirements to use in

our case study. The participants in our case study are 32 computer science graduate students

who have taken or are taking the graduate-level software engineering course

RE Practice: Using metrics

RE Phase: Elicitation, specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: North Carolina State University

Repeatability: First time case study results

Lesson ID: LL051 11 [Dietsch et al., 2011]

Journal: N/A

179

www.manaraa.com

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Requirements elicitation and formalisation can practically be outsourced to a consult-

ing party.

Source: Industrial case study

Rationale: Natural language safety requirements in industrial standards pose risks for ambigu-

ities which need to be resolved by the system manufacturer in concertation with the certificate

authority. This is especially challenging for small and medium-sized enterprises (SME).

Impact: The approach reduces the entry costs while, at the same time, it allows for a gradual

introduction of requirements engineering techniques and formal methods to development pro-

cesses in SME according to the needs of SME.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: A medium-sized company (SME) specialized in developing high-frequency

radio-based fire alarm systems (FAS).

Project size: The company employs about 20 people, of which three are dedicated software

developers

RE Practice: Using metrics

RE Phase: Elicitation, specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time industrial case study results

180

www.manaraa.com

Lesson ID: LL052 11 [Dietsch et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Consulting parties employ visual narratives as a means to make the benefits of formal

methods accessible to stake- holders lacking the corresponding educational background.

Source: Industrial case study

Rationale: Natural language safety requirements in industrial standards pose risks for ambigu-

ities which need to be resolved by the system manufacturer in concertation with the certificate

authority. This is especially challenging for small and medium-sized enterprises (SME).

Impact: Especially for the timing relations prevalent in the considered requirements, the draw-

ing and the documentation proved to be very effective. We could convey differences between

interpretations with it and later it was also possible to refer to the drawings to compare different

scenarios among each other.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: A medium-sized company (SME) specialized in developing high-frequency

radio-based fire alarm systems (FAS).

Project size: The company employs about 20 people, of which three are dedicated software

developers

RE Practice: Using visual narratives

RE Phase: Elicitation, specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

181

www.manaraa.com

Organisation Name: N/A

Repeatability: First time industrial case study results

Lesson ID: LL053 11 [Sampath et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use the formalism Structured Transition Systems (STS) that facilitates the rapid evo-

lution of specifications.

Source: Case study

Rationale: At this early stage of development, only overall goals of features are understood,

and there is a need to discover all possible scenarios of operation. Developing specifications

for such features is difficult because there is very little precedent from which one can draw

experience. Also, the requirements may depend critically on the technology available for im-

plementation, such as sensors or actuators available in the market, cost of implementation etc.

As a result specifications are continually revised and evolve from early conception to final im-

plementation.

Impact: The ability to use analysis results to refine and reinforce parts of the specification by

importing analysis results into STS specifications. In practice, this leads to a feedback loop

where requirements can be rapidly refined using analysis engines to drive the development of

requirements. Our method proved to be quite effective in developing a consistent and unam-

biguous specification of the feature. We were also able to identify a number of safety-critical

corner- case scenarios that had not been identified by the subject- matter experts. These sce-

narios would have been very difficult to identify by just inspection of the textual specification.

Target Object: Technique/method

Type: Positive

182

www.manaraa.com

Expression: Implicit

Application Domain: Automotive. novel in-vehicle control features

Project size: The document was around 50 pages long, and the functional specification itself

had around 60 requirements, with each having on average 4-5 sub-requirements. There were

around 5 bubble-diagrams showing the high- level mode behaviour of the feature.

RE Practice:N/A

RE Phase: Specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL054 11 [Ernst et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use the using a “requirements engineering knowledge base (REKB), whose spec-

ification is formalized to desirable solutions as the requirements change on top of a reason

maintenance system (ATMS).

Source: Case study

Rationale: While most research on design for software focuses on finding some correct solu-

tion, this ignores that such a solution is often only correct in a particular, and often short-lived,

context.

Impact: Our numbers suggest that the incremental algorithm constitutes a clear improvement

on starting from scratch. For example, looking for alternative solutions can be done nearly in-

183

www.manaraa.com

stantly, allowing stakeholders to use our tool as a workbench for solution identification. While

the naive algorithm (adding new changes to the REKB and re-calculating the labels) is not

terribly slow, there is a large relative difference we expect to see in larger models as well. The

timing results for finding minimal new changes are also nearly-instant, allowing the REKB to

support interactive decision-making.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: Large, randomly generated requirements models. We start with a 400-node model

RE Practice: Reuse

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL055 11 [Boulila et al., 2011]

Journal: N/A

Conference: N/A

Workshop: MERE

Year: 2011

Lesson: Brainstorming and Storytelling can play a complementary role in requirements elici-

tation.

Source: Case study

Rationale: Existing requirements elicitation approaches have proven insufficient to record

184

www.manaraa.com

complete, consistent, and correct requirements. Studies conducted have shown that 40% of

defects in software projects are due to incorrect recorded requirements. Therefore, some in-

novative approaches have been developed to deal with the lack of addressing the above- men-

tioned issues including video-based methods.

Impact: The Storytelling group was more dynamic, showed clearly more emotional signs than

the brainstorming group, members showed more interaction with each other, gave more stories

than solutions, and more anecdotes than brainstorming. This group produced by far much more

content than the first group, which essentially conducted brainstorming activities. The second

group produced less content (topics, questions, alternatives, various short stories, etc) and was

thinking in terms of solutions described in use cases than stories and anecdotes like in the first

group. Quantitatively seen, the first group produced almost three times more requirements

than the first group. The first group acted as a ”control group”, the second group acted as a

”treatment group”. Storytelling fulfilled the requirements and provided more elements to be

more effective than brainstorming. Indeed, the S-group produced a higher number of use cases

covering all of the ticket machine requirements the group members could think of. In addition,

more specific details were revealed which were not observed in the results of the brainstorming

group. Moreover, the use cases were clearly stated and related issues were solved during the

time-frame allocated for the case study.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Ticket machine

Project size: Twenty- five domain experts from various industrial companies academic institu-

tions to collect requirements using a Storytelling technique

RE Practice: Using story-telling

RE Phase: Elicitation

Software Process: N/A

185

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL056 11 [Schneider, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use Scheider’s ConTexter tool for focusing spontaneous feedback to support evolu-

tion of the running system.

Source: Case study

Rationale: Modern software systems are rarely built from scratch. They rather evolve over a

long period of time while components and subsystems are developed independently. During

that evolution, new and changing requirements emerge when end-users interact with the sys-

tem. Users encounter situations that provoke spontaneous complaints or suggestions, which

may be the seed of new requirements. However, there are two challenges: How to capture

spontaneous reactions and how to focus and let them mature into valid requirements? Tra-

ditional requirements engineering techniques are hardly applicable for capturing spontaneous

feedback: - End-users are on their own when unforeseen effects or failures occur. Usually, no

requirements expert is present to capture feedback or requirements. - It is difficult or impos-

sible to stimulate spontaneous responses in a lab or interview situation. Some phenomena are

difficult to anticipate and to reproduce. They emerge from complex interactions and dependen-

cies between users, devices, and services.

Impact: SE members came up with 44 entities. In response to the open question, all 28 stu-

dents together listed 47 different entities they wanted to feed back to. There was an overlap of

186

www.manaraa.com

18 entities (41% of 44) which both parties independently brought up as relevant. SE members

had defined 26 entities that none of the students nominated in the open question. However,

when students saw them on the list, many students declared they wanted to give feedback. 25

of those 26 entities were accepted by at least one student. On average, each student selected

7 from that list. In turn, students nominated 29 additional entities that SE members had not

defined. SE members considered 5 of them (17% of 29) very interesting and wanted to define

them. They were less interested in 10 others (34%), and explicitly rejected 14 (48%) entities,

almost half of the 29 entities proposed by students. Rejected entities were considered outside

the scope and responsibility of SE as a provider. They could distract rather than focus feedback.

Many entities (15) had been defined via a context in the hallway of the SE department. The

density of WiFi antennas was also high. The ratio of entity density per discriminating WiFi

signals determines an upper bound for resolution in entity identification. In our case, only a

small number of defined entities could not be distinguished based on available WiFi signals.

Indistinguishable entities need to be presented together to end-users for final selection. End-

user selection becomes tedious when too many candidates are proposed. Entity resolution can

be increased by more WiFi antennas, or by using RFID or NFC tags. In our case, resolution

over all defined entities was acceptable.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: University

Project size: Nine members of the SE department contributed to defining 44 entities in a 30-

minute informal session.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

187

www.manaraa.com

Recording Date: N/A

Organisation Name: Leibniz UniversitŁt Hannover

Repeatability: First time evaluating case study results

Lesson ID: LL057 11 [Rauf et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use Rauf’s et al. framework for the specification of LSs as templates and the extrac-

tion of their instances from rich- text documents.

Source: Experiment

Rationale: Software requirements documents (SRDs) are often authored in general-purpose

rich-text editors, such as MS Word. SRDs contain instances of logical structures, such as use

case, business rule, and functional requirement. Automated recognition and extraction of these

instances enables advanced requirements management features, such as automated traceability,

template conformance checking, guided editing, and interoperability with requirements man-

agement tools such as RequisitePro. The variability in content and physical representation of

these instances poses challenges to their accurate recognition and extraction.

Impact: The framework provides an opportunity for combining an open environment of generic

and widely adopted text editors with the advanced features offered by RM tools. The recall was

100% for 33 templates and 97%, 95% and 83% for T21,19,24, respectively. PrecisionLS was

100% for all templates except one. PrecisionLC was 100% for 34 templates and 86% for T27

and T34. The extraction time for most templates was less than 2 seconds, which is good for

practical purposes. The longest time, 12 seconds, was for T14, whose 115 instances were

spread across 5 documents. Another factor affecting the extraction time is the number of LCs:

T14 has 13; T23 has only 7. template size is approximately proportional to the no. of its LCs.

188

www.manaraa.com

The maximum template size was 52 lines, still acceptable for human viewing. In general, the

framework makes structured content of rich-text documents accessible for further automatic

processing: Rich-text document import. Requirements management tools features. Semantic

annotation. Structured query. Analysis of product line requirements.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: Used a total of 43 documents24 from three industrial partners, 7 from a use-

case document repository, 6 student projects, and 6 downloaded from the Internet by searching

with “Software Requirements Specification, “Software Requirements Documents, or SRS as

keywords. Our evaluation considers all LSs that had at least four instances within the 43 doc-

uments, giving us a total of 36 LSs.

RE Practice: Using templates

RE Phase: Specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL058 11 [Nolan et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Apply of risk analysis techniques for managing requirements uncertainty by using the

189

www.manaraa.com

following attributes for requirements: volatility, impact, precedence, time criticality and doing

the following analyses: risk index, maturity index, proportional risk index.

Source: Industrial experience

Rationale: In the development of complex systems the requirements for the system will almost

always remain uncertain late into the software development. In gas turbine engine control sys-

tems at Rolls-Royce, typically 50% of requirements will change between Critical Design Re-

view and Entry into Service. Ignoring or not planning for requirements uncertainty will cause

scrap and rework that will manifest later in the project.

Impact: The return on investment of this technique has been between 100:1 and 500:1. The

analyses technique described in this paper adds around 1 minute extra effort for analysing each

requirement but has been shown to reduce Scrap & Rework on a project from an average of

50% down to a level below 5%. The return on investment for uncertainty analysis and mitiga-

tion can be between 100:1 and 500:1, making it one of the most cost-effective improvements a

project can apply.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Control Systems department at Rolls-Royce is responsible for the En-

gine Electronic Controllers (EECs) for a range of small and large gas turbine engines, for the

aerospace industry.

Project size: The development of a new engine can take up to 5 years and will be highly evolu-

tionary. The electronics, the engine, and the airframe will evolve and mature through the life of

a project causing new functionality and changes to emerge. Historical data shows that between

the point of Critical Design Review (a system concept review gate) and Entry into Service, a

project will spend approximately 50% of its cost on evolutionary work rather than new product

development.

RE Practice: N/A

190

www.manaraa.com

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Rolls Royce

Repeatability: First time industrial experience

Lesson ID: LL059 11 [Dekhtyar et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Analysts tracing experience, amount of effort applied to look for missing links, com-

fort level with tracing, etc. do not affect final TM accuracy.

Source: Experiment

Rationale: N/A

Impact: The analysts experience, effort applied, etc. do not matter.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: University

Project size: Two experimental sites for a total of 84 participants (students)

RE Practice: Assisted tracing, Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

191

www.manaraa.com

Organisation Name: California Polytechnic State University and University of Kentucky

Repeatability: Confirms the results from a previous study

Lesson ID: LL060 11 [Dekhtyar et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: The initial (lower) TM accuracy and the amount of time an analyst spent vetting links

provided by the tool are the most important factors impacting final TM accuracy.

Source: Experiment

Rationale: N/A

Impact: Alters our overall approach to assisted tracing. We can no longer rely on the auto-

mated tracing methods to produce high-accuracy results and expect these results to translate

into even higher-accuracy ones in assisted tracing settings. While we still consider the quest

for high-precision, high- recall automated tracing methods important, we must acknowledge

that it will not provide a panacea for assisted tracing.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

Project size: Two experimental sites for a total of 84 participants (students)

RE Practice: Assisted tracing, Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

192

www.manaraa.com

Organisation Name: California Polytechnic State University and University of Kentucky

Repeatability: Confirms the results from a previous study

Lesson ID: LL061 11 [Vogl et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use the CBSP (Component-Bus-System- Property) approach to reconciling require-

ments and architectures by capturing early decisions about the architecture along with GQM

model.

Source: Industrial experience

Rationale: Understanding the relationship between software requirements and a software sys-

tems architecture is a big challenge in industrial practice. Part of the challenge stems from

the fact that requirements and architectures use different terms and concepts to capture the el-

ements relevant to each. It has been pointed out that crafting a systems requirements and its

architecture should be done in a concurrent manner by interleaving their development.

Impact: Applying the 6 architectural dimensions in a lightweight fashion provided good guid-

ance and led to the systematic analysis of requirements for architectural concerns. The effort

for building the CBSP model (without the GQM extensions) was about two person days. The

process also helped identifying missing requirements (e.g., if a certain architectural dimen-

sion was not addressed). The intermediate model facilitates the mapping of requirements to

architectures. Furthermore, the intermediate CBSP model eases capturing and maintaining ar-

bitrary complex relationships between requirements and architectural model elements, as well

as among CBSP model elements. Deriving architectural styles from CBSP elements is not

straightforward. Our basic observation is that one size does not fit all at least not when it

comes to understanding the pros and cons of architectural choices. Our observation is that

193

www.manaraa.com

CBSP and GQM are a good fit, in particular GQM provided a better and more meaningful

structure for describing the CP, BP, and SP properties and assessing their satisfiability. A draw-

back is the current lack of tool support.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Mobile applications

Project size: The taskmind product is currently used by about 6,900 users in 3,000 projects for

managing 85,000 tasks and appointments. The size of the code base is about 230 KLOC.

RE Practice: N/A

RE Phase: Elicitation, Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time industrial experience

Lesson ID: LL062 11 [Bjarnason et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Complex product & large organization, Low understanding of roles of others, Gaps

between roles over time, Unclear vision of overall goal cause communication gaps.

Source: Explanatory case study

Rationale: Communication is essential for software development as its efficiency throughout

the entire project life-cycle is a key factor in developing and releasing successful software

194

www.manaraa.com

products to the market.

Impact: Communication gaps have the following effects: Customer expectations not met, Low

motivation to contribute to reqs work, Software unit controls what is implemented, Unclear re-

quirements coverage, Test scope mismatch, Communication of incorrect reqs, Quality issues,

Wasted effort, Problems with SRS. By closing the communication gaps the requirements may

continue all the way through the project life-cycle and be more likely to result in software that

meets the customers expectations.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Embedded systems

Project size: A large market-driven software development company, where we have inter-

viewed nine practitioners. The company has around 5000 employees. There are several con-

secutive releases of a platform (a common code base of the product line) where each of them

is the basis for one or more products that reuse the platforms functionality. A major platform

release has a lead time of approximately two years and is focused on functionality growth

and quality enhancements for a product portfolio. For such projects, typically around 60-80

new features are added, for which approximately 700-1000 system requirements are produced.

These are then implemented by 20-25 development teams with around 40- 80 developers per

team, assigned to different projects. The requirements legacy database amounts to a very com-

plex and large set of requirements at various abstraction levels in the order of magnitude of

20,000 entities, making it an example of the Very-Large Scale Requirements Engineering con-

text

RE Practice: Communication

RE Phase: Negotiation

Software Process: N/A

Project Date: N/A

195

www.manaraa.com

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time explanatory case study results

Lesson ID: LL063 11 [Carvallo and Franch, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Conduct the followings method: Phase 1: Identification of the underliying platform;

Phase 2: Construction of QMs; Phase 3: Evaluation of alternatives using the QMs; Phase 4:

Analysis and issue of recommendations to negotiate both initial and emerging requirements

and the reconciliation of stakeholders concerns.

Source: Industrial case study

Rationale: Although several methods have been proposed to support OTS component selec-

tion, the truth is that in many cases the process is driven by political and other non-technical

aspects, considering components as independent and isolated. Because of this, relevant stake-

holders requirements and concerns, as well as the implications that the selection of a particular

component may bring to the system architecture, are simply ignored. In the worst case this

may lead to the selection of unsuited or inappropriate components and eventually to miscar-

ried projects, but more often to situations in which projects froze due to lack of stakeholders

agreement in relation to the newly created architectural scenario and some of its emerging re-

quirements.

Impact: Several benefits emerged from the experience: Fosters involvement of parties, Makes

lightweight approach to requirements elicitation, Proposes a structured framework for require-

ments negotiation at all layers, Makes evident hidden requirements and potential risk, Helps to

establish real cost of property, Makes clear the scope of suppliers services and legal concerns,

196

www.manaraa.com

Easies the identification of mismatches and the issue of recommendations.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Banking

Project size: Medium size company

RE Practice: Using software quality models

RE Phase: Negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Mutualista Azuay

Repeatability: First time industrial case study results

Lesson ID: LL064 11 [Boutkova and Houdek, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use semi-automatic identification of features in natural language specifications based

on lexical analysis (MIA).

Source: Industrial experience

Rationale: Reuse of requirements leads to reduction in time spent for specification of new

products. Variant management of requirement documents is an essential prerequisite in terms

of a successful reuse of requirements. It supports the decisions if available requirements can

be reused or not. One possibility to document the variability is feature modelling. One main

challenge while introducing feature modelling in a grown environment is to extract product

197

www.manaraa.com

features from large natural language specifications. The current practice is a manual review of

specifications conducted by domain experts. This procedure is very costly in terms of time.

Impact: The first experience with MIA shows that the generated feature candidate lists do help

to reduce the time effort for feature identification, but not significantly. The variability experts

use the feature candidate lists willingly as a starting point for the feature identification process.

In our experience, it is very complicated for the variability expert to find the rationales for the

variability in specifications created by other people. The feature candidate list shows which

characteristic of the component or system the variability expert must regard. Based on this

feature candidate list a variability expert could review the specification and prepare the ques-

tions for the specification author. The number of feature candidates is depending on number

of requirements but not in the linear coherence. The typical size of a feature candidate list is

about 150 words. The feedback of variability experts is that it is not problematic to remove

additionally stop words and to make clusters for the words with same stem. this approach is

usable. At present, it is not possible to identify 100% of all variable features and there are

many false candidates.

Target Object: Technique/method

Type: Positive, negative

Expression: Implicit

Application Domain: Automotive: passenger car development

Project size: N/A

RE Practice: Reuse

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Daimler

Repeatability: First time industrial experience

198

www.manaraa.com

Lesson ID: LL065 11 [Heaven and Letier, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Using Heaven’s et al. automated techniques for (i) simulating quantitative goal mod-

els so as to estimate the levels of goal satisfaction contributed by alternative system designs

and (ii) optimising the system design by applying a multi-objective optimisation algorithm to

search through the design space.

Source: Experiment

Rationale: Making decisions among a set of alternative system designs is an essential activ-

ity of requirements engineering. It involves evaluating how well each alternative satisfies the

stakeholders goals and selecting one alternative that achieves some optimal tradeoffs between

possibly conflicting goals.

Impact: Relatively short searches can be performed using the genetic algorithm (e.g. a search

with 50 generations for a population of 20 runs in 3.5 minutes) but they return solutions that

are still far from the Pareto- optimal. Increasing the population size and number of generations

improves the quality of the solutions but it did not produce better solutions than exhaustive

search when allowed to run for the same amount time. For example, Figure 6 plots the cost

and 14 minute response rate of the solutions explored through an exhaustive search (depicted

as squares) and of the solutions returns by the genetic algorithm running (depicted as circles)

when allowed to run for the same amount of time. A genetic algorithm approach would still

be useful however when working over much larger models where an exhaustive search is not

feasible.

Target Object: Technique/method, tool

Type: Positive, negative

199

www.manaraa.com

Expression: Implicit

Application Domain: Ambulance service system

Project size: A global design space for the LAS system of 4?3?3?3?6 = 648 alternative sys-

tems.

RE Practice: Using Quantitative goal models

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: London Ambulance Service

Repeatability: First time evaluating experiment results

Lesson ID: LL066 11 [Brill and Knauss, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Observe anonymous users for requirements elicitation.

Source: Experiment

Rationale: Today, people find themselves surrounded by IT systems in their everyday life. Of-

ten they are not even aware that they are interacting with an IT system. More and more of these

systems are context adaptive. Requirements to such systems may change for various reasons:

The context may fundamentally change when other systems are introduced. New trends and

fashions may evolve. Operators need to react quickly to such changes if they want to keep their

systems competitive. Traditional approaches to requirements elicitation start to fail in this situ-

ation: context adaptive systems serve many users with different profiles. In addition, users may

be reluctant to participate in improving it. Thus, it is hard to establish a representative model

200

www.manaraa.com

of requirements. Furthermore, it is hard to capture the context of requirements by subsequent

interviews.

Impact: It allows efficient observation of many stakeholders and the derivation of new require-

ments. In two evaluation scenarios we show that analysts are able to i) prepare the observations

based on our concepts, ii) capture the required data in the field, and iii) are able to derive re-

quirements from the contextual observations. Observers are able to do many observations, even

in complex situations and when multiple behavioral and context attributes are involved. If too

many context attributes have to be considered, technical solutions can help. It is also possible

to partition the context attributes over different observers. Data analysis is straight forward and

can efficiently be done as long as the data can be loaded into a typical spreadsheet. It took the

analyst only one hour to create a rudimentary scatter plot that allowed to assess, whether the

choice of a parking lot is correlated to the relation of free parking lots and free parking lots

next to pillars. Thus, we assume that the approach scales to real world problems.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Basement garage and a bus stop both situated in the center of Hanover

on a workday in the afternoon

Project size: N/A

RE Practice: Using observation techniques

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

201

www.manaraa.com

Lesson ID: LL067 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying insights from agile development to requirements engineering, the key

concepts from the agile world such as user stories or product owners must be mapped intelli-

gently to appropriate concepts in RE, not copied.

Source: Case study

Rationale: While Requirements Engineering textbooks state that a requirements specification

must be complete, in real-life projects we are always starting too late, with too few resources,

so we cant do everything. The software development community has solved a similar problem

(not having enough resources to implement everything that was asked for) by introducing agile

development methods, which offer ways of segmenting the overall project, and choosing which

parts to allocate re- sources to.

Impact: Our case study confirmed that a flexible requirements engineer ing process inspired by

agile development methods can de- liver results that provide business value, even with severe

resource constraints.Our case study also demonstrated that agile requirements engineering ac-

tivities can indeed feed into development project that follows a classical V-model approach, by

making a clear distinction between incremental delivery of requirements vs. non-incremental

delivery of implementation. The implementation part also included hardware development

subprojects, and our case study demonstrates the feasibility of agile requirements engineering

activities preceding development activities which, for technical reasons, cannot deliver in mul-

tiple releases.

Target Object: Technique/method

Type: Positive

Expression: Implicit

202

www.manaraa.com

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: N/A

RE Phase: Elicitation, analysis, specification, validation

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial case study results

Lesson ID: LL068 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying agile methods to RE, Inform stakeholders about the process by: mak-

ing our release schedule more transparent, and we need to communicate the objectives and

benefits of the multi-staged approach more clearly.

Source: Case study

Rationale: Our stakeholders (product managers, developers, testers) were used to a more

waterfall-like approach from previous projects, and we made the mistake to not inform them

well enough about our changed approach. This resulted in numerous questions about why the

203

www.manaraa.com

requirements were not complete, how much would change in the next release, etc.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: Communication

RE Phase: N/A

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial experience

Lesson ID: LL069 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying agile methods to RE, Inform stakeholders about triage strategy by:

explaining the triage strategy in more detail, and we need to clarify the difference between

204

www.manaraa.com

requirements triage and implementation triage.

Source: Case study

Rationale: There were numerous questions from stakeholders about why a particular feature

was not described in detail in a release of the requirements specification, and whether that

meant that the feature would not be implemented.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: Communication

RE Phase: N/A

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial experience

Lesson ID: LL070 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

205

www.manaraa.com

Workshop: N/A

Year: 2011

Lesson: When applying agile methods to RE, Deliver even more frequently by: increasing

the number of releases, and reduce the number of new topic areas (user stories) added in each

release. This will allow us to react faster and better to changing demands from our readers, in

terms of style, level of details, and kinds of information included in the deliverables.

Source: Case study

Rationale: Segmenting delivery into two releases several months apart did solve our problem

with insufficient resources, but it did not provide the requirements authors with enough learn-

ing opportunities with regard to the needs and expectations of our customers, the developers.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: N/A

RE Phase: N/A

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

206

www.manaraa.com

Repeatability: First time industrial experience

Lesson ID: LL071 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying agile methods to RE, Segment deliverables horizontally as well as

vertically.

Source: Case study

Rationale: We mainly segmented the requirements specification vertically, i.e. into multiple

features or topic areas, each of which contains requirements-related items at multiple levels

of detail, such as user needs, use cases, user requirements, and finally technical requirements.

While this worked well for our developer customers, other types of customers such as prod-

uct managers would have benefited from a more layered approach, where we would create

agreement and document e.g. user needs at a broader scope, and then progress to analyze and

document use cases at the same or even a smaller scope.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

207

www.manaraa.com

derived.

RE Practice: N/A

RE Phase: Specification

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial experience

Lesson ID: LL072 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: When applying agile methods to RE, dont try to create one deliverable for all cus-

tomers.

Source: Case study

Rationale: Much like different customers of the business product may need different product

configurations, the customers of the RE product need different configurations, too. The re-

quirements model comprises user needs, constraints, background information, use cases and

line-item requirements at multiple levels of detail. Product managers are interested in user

needs, use cases, background information, and high-level requirements. Developers are inter-

ested in use cases and line-item requirements that can be converted to tasks. Testers may not

want to see user needs and background information, but only testable line-item requirements.

In other words, the RE process serves multiple“customers, which have different needs and ex-

pect different products.

Impact: Our requirements management tool allowed us to create targeted reports for different

208

www.manaraa.com

customer groups, which contained just the information they were interested in. Also, different

report formats can match the working style of different customer groups, e.g. a narrative Word

document, an Excel table with line-item requirements, or an HTML page with anchors that can

be linked to.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: N/A

RE Phase: Specification, documentation

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial experience

Lesson ID: LL073 11 [Waldmann, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

209

www.manaraa.com

Lesson: When applying agile methods to RE, be prepared to elicit & document multiple levels

of detail simultaneously.

Source: Case study

Rationale: In the beginning, we wanted to proceed sequentially from high-level product con-

cepts and statements of user needs, via detailed requirements that are understandable by prod-

uct managers, and finally to detailed technical requirements. During the requirements elicita-

tion, information at all levels of detail was offered by the stakeholders at the same time, and

we chose to accept and document all that information whenever it became available.

Impact: Filtered reports still allowed us to publish and create agreement between stakeholders

at successively refined levels of detail.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Hearing solutions, including hearing instruments, hearing protection and

communication systems, and implantable hearing systems

Project size: The project duration is more than 3 years from concept to the launch of 1st

products. It involves more than 100 R&D engineers, including the equivalent of 2-4 full-time

requirements engineers. The system requirements specification currently consists of around

1200 system requirements items, from which component-specific technical requirements are

derived.

RE Practice: N/A

RE Phase: Elicitation

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: Sonova Group

Repeatability: First time industrial experience

210

www.manaraa.com

Lesson ID: LL074 11 [Post et al., 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Use Post’s et al. algorithm to automatically check for requirements vacuity.

Source: Experiment

Rationale: A requirement is vacuous in a set of requirements if it is equivalent to a simpler

requirement in the context of the other requirements. For example, the requirement if A then

B is vacuous together with the requirement not A. The existence of a vacuous requirement is

likely to indicate an error.

Impact: An automatic check that proves the absence of vacuity is beneficial. In fact with the

help of our vacuity check we discovered one error that was not discovered in the manual re-

view.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: Automotive: car multimedia, driving assistance, engine controlling, and

powertrain development

Project size: Eight specifications

RE Practice: Automatic checking

RE Phase: Analysis, validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Bosch

211

www.manaraa.com

Repeatability: First time evaluating experiment results

Lesson ID: LL075 11 [Wever and Maiden, 2011]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2011

Lesson: Mismatch between titles and actual responsibility, mismatch of business analysis ex-

perience level and size of project, lack of resources, Training is ad hoc without following it

through, no leadership and management support are factors that inhibit effective requirements

work in business-oriented projects.

Source: Survey

Rationale: Despite trends to standardize business analysis practices through accreditation bod-

ies such as the International Institute of Business Analysis (IIBA), imparting more common

requirements knowledge through training such the International Requirements Engineering

Board (IREB) and the emergence of different organizational standards and regulators, there

is increasing anecdotal evidence that business analysts are not able to use the skills taught, and

concerns that, as a result, their work is becoming more fragmented and less rewarding. Indeed,

some proponents of agile development methods even argue that the traditional role of business

analysts is changing fundamentally.

Impact: An unclear scope makes it difficult to manage stakeholder expectations and results in

vague estimation with scope creep and lack of scope management often presenting major ob-

stacles on projects. The business analysts lack of scope involvement and management may also

contribute to a poor stakeholder engagement strategy. The absence of requirements validation

within a presumably time-stricken project environment that also suffers from a lack of process

and guidance would inevitably invite failure.

Target Object: People

212

www.manaraa.com

Type: Negative

Expression: Implicit

Application Domain: N/A

Project size: 596 past attendees of the fundamental business analysis course ran by Software

Education. A total of 127 subjects completed the survey

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time survey results

Lesson ID: LL076 11 [Jones, 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Creating word based requirements if no tool is used.

Source: Industrial experience

Rationale: N/A

Impact: Enabled us to develop our requirements processes such that we were able to describe

our needs in some detail. This proved to be a great asset when procuring a tool.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Hearing instruments

213

www.manaraa.com

Project size: Employing close to 7000 people we operate globally under a number of brands.

Our 2009/10 turnover exceeded CHF 1.5 bn (an increase of 20.1% on the previous year).

RE Practice: N/A

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Phonak

Repeatability: First time industrial experience

Lesson ID: LL077 11 [Jones, 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: To reduce a (very) long list of RE tools candidates to a short list in less than a day is

by asking yourself “Do the vendors on my long list understand where I am right now?, “Do

they understand what it feels like to be on this side of the fence?, “Do they understand my

User Needs?, and “Do they know what I need from them right now? In short, “Do they DO

Requirements Engineering? Simply, to give each vendor web site five minutes to tell us what

the product can do. If they can describe their tool in such a short period of time they may have

done some real requirements engineering.

Source: Industrial experience

Rationale: N/A

Impact: This very simple approach reduced our list of 71 vendors to a short list of only 6!

Target Object: Technique/method

Type: Positive

214

www.manaraa.com

Expression: Explicit

Application Domain: Hearing instruments

Project size: Employing close to 7000 people we operate globally under a number of brands.

Our 2009/10 turnover exceeded CHF 1.5 bn (an increase of 20.1% on the previous year).

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Phonak

Repeatability: First time industrial experience

Lesson ID: LL078 11 [Jones, 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Create a description of your business, a sample fictitious requirements document (so

NDAs werent needed) and multiple scenarios for the tool vendors to demonstrate. This includes

both sample requirements documents and specific requirements for your tool. In addition we

also created a sample scenario for them to follow. A step by step list of actions that we would

like them to demonstrate with the document we delivered. We invited the six short listed ven-

dors to visit us and show us how their product would satisfy our needs. In addition two internal

staff were nominated to represent our current tools (Word and Excel) and set the bar for the

others to beat.

Source: Industrial experience

Rationale: N/A

215

www.manaraa.com

Impact: Aside from taking the vendors away from their tried and tested sales presentations

this was also a useful exercise for us in that it forced us to think about what we really did on

a day-to-day basis. The results were as follows: Some vendors agreed to do demonstrations;

some did not bother to respond. Some visited and demonstrated the scenarios as requested;

others offered “out of the box sales presentations. Some sent team members with both techni-

cal expertise and customer facing (requirements elicitation) skills; others had a “techie on the

end of a phone. One vendor replied: “Im very happy to put a demo together, but if ¡xx¿ is a

requirement, we might not be the right choice for you. If that puts us out of the running, thats

regrettable. I am absolutely convinced that you would be very successful with ¡tool¿ in your

organization, but I cant let your time be wasted.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Hearing instruments

Project size: Employing close to 7000 people we operate globally under a number of brands.

Our 2009/10 turnover exceeded CHF 1.5 bn (an increase of 20.1% on the previous year).

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Phonak

Repeatability: First time industrial experience

Lesson ID: LL079 11 [Jones, 2011]

Journal: N/A

Conference: N/A

216

www.manaraa.com

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: In order to select the right tool for you, you must take control of the selection process

and drive it to completion. It is vitally important that you know your own tool requirements.

This must include things like resource availability for tool use and admin. With this you can

match the tool to the resources available. In our example the upkeep of a high end tool would

have drained a significant proportion of the resource available in the team.

Source: Industrial experience

Rationale: N/A

Impact: Enabled us to compare like with like, confirmed that the vendors could deliver a tool

to meet our needs, took the vendors away from their polished marketing routine and towards

our reality as users of the tool. What is more, the selection process provided us with a great

opportunity to review our own ways of working. The selected tool has been in place for close

to two years and it has proven to have been a good choice, is easy to use (without consultancy

services), has scaled to meet our needs and remains easy to use and support.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Hearing instruments

Project size: Employing close to 7000 people we operate globally under a number of brands.

Our 2009/10 turnover exceeded CHF 1.5 bn (an increase of 20.1% on the previous year).

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Phonak

217

www.manaraa.com

Repeatability: First time industrial experience

Lesson ID: LL080 11 [Jones, 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Retain the formatting your stakeholders understood.

Source: Industrial experience

Rationale: N/A

Impact: It meant that we did not need to re-educate our stakeholders or try to reinvent our qual-

ity system. A measure of how successful this was, is that it took many months for stakeholders

to realise we had migrated from manual document product to generating reports from a tool.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Hearing instruments

Project size: Employing close to 7000 people we operate globally under a number of brands.

Our 2009/10 turnover exceeded CHF 1.5 bn (an increase of 20.1% on the previous year).

RE Practice: N/A

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Phonak

Repeatability: First time industrial experience

218

www.manaraa.com

Lesson ID: LL081 11 [Daramola et al., 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Use Daramola’s et al. framework and tool prototype that facilitates the early identifi-

cation of potential system hazards from requirements and the reuse of previous experience for

conducting HAZOP.

Source: Experiment and field assessment by experts

Rationale: The capability to identify potential system hazards and operability problems, and

to recommend appropriate mitigation mechanisms is vital to the development of safety critical

embedded systems. Hazard and Operability (HAZOP) analysis which is mostly used to achieve

these objectives is a complex and largely human-centred process, and increased tool support

could reduce costs and improve quality.

Impact: Each of the three industry experts that took part in the assessment returned an evalua-

tion report from which we computed a mean weighted score of 3.27 (out of 5) for the KROSA

tool in relation to the evaluation objectives of the field assessment. The tool obtained its high-

est mean score ratings (out of 5) in the aspects of support for reuse (4.08), sensitivity (3.67),

confidence (3.25), and accuracy of result (3.25), while the lowest mean score ratings were in

the aspects of: limitations (3.0) and correctness of result (2.7). The experts were unanimous in

confirming that the tool will be a valuable support for the conduct of HAZOP, with the potential

to alleviate the complexity of the HAZOP process by enabling reuse of experience.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: (1) Rail Lock System (2) Steam Boiler Control system; (3) Adaptive

Cruise Control (ACC) System.

219

www.manaraa.com

Project size: N/A

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time field assessment results

Lesson ID: LL082 11 [Merten et al., 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Use the Sunburst and Netmap visualization techniques for representing traceability

links be- tween requirements knowledge.

Source: Evaluating example

Rationale: The representation of traceability links in requirements knowledge is vital to im-

prove the general understanding of requirements as well as the relevance and consequences of

relations between requirements artifacts and other artifacts in software engineering. Various

visualization techniques have been developed to support the representation of traceability in-

formation, e.g. traceability matrices, graphs and tree structures. However, these techniques do

not scale well on large amounts of artifacts and often do not provide additional functionality to

present supplementary data.

Impact: Visualizing traceability links will directly support three main activities related to these

links: recovering, browsing and maintenance of traceability links. Browsing, in turn, supports

the understanding of requirements knowledge. Generally, traceability links substantiate the

220

www.manaraa.com

meaning of artifacts as they are shown in their specific context. Three exemplary questions

have been answered by applying Sunbust and Netmap visualizations on realistic specification

data. The questions could be answered using the combination of both visualization techniques.

The questions exemplified in this paper are very basic and may also be answered differently,

e.g. using complex database queries

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: N/A

RE Practice: Visualizing traceability information, Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating example results

Lesson ID: LL083 11 [Sharma and Biswas, 2011]

Journal: N/A

Conference: N/A

Workshop: International Workshop on Managing Requirements Knowledge

Year: 2011

Lesson: Use courteous logic based representations for specifying requirements.

Source: Case study

Rationale: N/A

Impact: Courteous logic based requirements representation meets the consolidated set of desir-

221

www.manaraa.com

able features for a requirements specification language: Abstract representation of real-world,

Not affected by design and development details, Validation in terms of observable behavior

of the system, Ensuring consistency, Maintainability and Traceability, Well understood by the

involved parties

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Educational institute

Project size: We identified a total of 8 entities along with their attributes in this sub-system.

RE Practice: Using a specification language

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL084 11 [Teruel et al., 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Use the CSRML notation for requirements modelling.

Source: Controlled experiment

Rationale: As for single user systems, a proper specification of software requirements is a very

important issue to achieve the quality of the collaborative systems. Nevertheless, many of these

requirements are from a non-functional nature because are related to the user’s need of being

222

www.manaraa.com

aware of other users, that is, the workspace awareness.

Impact: the subjects groups that was given the CSRML models obtained a better score than

those who try to understand the i* one. the CSRML notation improve the understandability of

requirements model respect to i*.

Target Object: Language

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 30 Computer Science students (15 Group 1; 15 Group 2)

RE Practice: Using a requirements model

RE Phase: Specification

Software Process: N/A

Project Date: May-11

Recording Date: N/A

Organisation Name: Univertisy of Castilla La Mancha (Albacete, Spain)

Repeatability: First time experiment results

Lesson ID: LL085 11 [Erra and Scanniello, 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Use the brainstorming method for elicitation rather than the Think-Square-Pair method.

Source: Controlled experiment

Rationale: Both in the traditional and global software development contexts, requirements en-

gineering aims at defining the features that the system must have (i.e., functional requirements)

or constraints (i.e., quality or pseudo requirements) that it must satisfy to be accepted by cus-

223

www.manaraa.com

tomers. In order to model functional requirements, several approaches have been proposed in

the past, and of these, behavioral modeling is a common part of the most broadly employed

ones. Behavioral modeling includes the requirements elicitation phase in which stakehold-

ers communicate and cooperate to solve problems and to represent functional requirements in

terms of use case diagrams and use cases.

Impact: The study reveals a significant difference in terms of time needed to create use cases

in favor of the face-to-face interaction with no significant impact on their quality.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 27 were students of a Software Engineering course of the Bachelor program,

while 9 were students of a Computer Graphic course of the Master program

RE Practice: Brainstorming

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Basilicata

Repeatability: First time experiment results

Lesson ID: LL086 11 [Isaacs and Berry, 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Do not skip the requirements gathering process.

224

www.manaraa.com

Source: Case study

Rationale: In the traditional software development lifecycle (SDLC), requirements engineer-

ing (RE) is arguably one of the most important stages. The role of RE has been described in

literature as very important to identify stakeholders, detect problems, explore different solu-

tions, and to decide what to implement

Impact: The lack of any requirements gathering process apparently led to missing functions in

the product, reduced productivity among the projects members, and poor cost estimation. This

lack converted a potentially profitable project into a liability. In the end, the project members

completed the product, but much time was wasted. A requirements specification could have

saved this time. the lack of requirements affected the effort, cost, and development time es-

timation process negatively. In particular, five of the seven project members strongly agreed

that the lack of requirements affected their estimation, while two agreed that the lack made a

difference.

Target Object: Policy

Type: Negative

Expression: Implicit

Application Domain: N/A

Project size: 600 employees in 26 offices around the world, and of these, from 225 to 250

are in O. Xs revenues in Fiscal 2011 from about 20 product suites and about 100 bundleable

services was US 99.2 million. The average software development project in O had from three

to five developers and one quality assurer, took 18 to 6 months, generated 2.8 MB of delivered

source code.

RE Practice: N/A

RE Phase: Elicitation, analysis, specification, validation

Software Process: Agile SDLC

Project Date: Jul-12

Recording Date: N/A

225

www.manaraa.com

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL087 11 [Aceituna et al., 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Use the NLtoSTD method for requirements validation.

Source: Experiment

Rationale: Requirements engineering is one of the most important and critical phases in the

software development life cycle, and should be carefully performed to build high quality and

reliable software. However, requirements are typically gathered through various sources and

represented in natural language (NL), making requirements engineering a difficult, fault prone,

and a challenging task.

Impact: For team effectiveness, the results show that NLtoSTD is beneficial at finding the

incompleteness in the requirements when the subjects clearly understand the process of trans-

lating the NL to STD-BBs. Also, we find that the characteristics of the NL requirement specifi-

cations affected the effectiveness results The results clearly show that the fault checklist method

is more efficient at finding faults. This is mainly because: 1) the fault checklist looks for ten

types of faults whereas NLtoSTD focuses on detecting only two types of faults (MF and AI);

and 2) four (out of 11) subjects using NLtoSTD found no true faults due to their misunder-

standing of the translation process.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Case study setting: University. Used systems: A web-based tool for

226

www.manaraa.com

managing student elections, A campus event calendar, A help desk management system, An

intelligent rating system for electronic entertainment media, An event registration system

Project size: 16 computer science graduate students. A web-based tool for managing student

elections: 42 pages, A campus event calendar: 21 pages, A help desk management system:

28 pages, An intelligent rating system for electronic entertainment media: 17 pages, An event

registration system: 33 pages

RE Practice: N/A

RE Phase: Validation

Software Process: N/A

Project Date: Jul-12

Recording Date: N/A

Organisation Name: North Dakota State University

Repeatability: First time experiment results

Lesson ID: LL088 11 [Reggio et al., 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Use Reggio’s et al method for detecting flaws in business process models expressed

as activity diagrams

Source: Document analysis study

Rationale: Business process modelling is often used in the initial phases of traditional soft-

ware development to reduce faulty requirements and as starting point for building SOA based

applications. Often, modellers produce business process models without following recognized

guidelines and opt for light models where nodes representing the actions are simply decorated

with natural language text. The potential consequence of this practice is that the quality of built

227

www.manaraa.com

business process models may be low.

Impact: Preliminary results show the effectiveness of our manual method in revealing errors

and style violations. Overall, we found 55 flaws (whereof 23 semantic errors) in the 14 anal-

ysed models. As far as effort is concerned, we can say that the effort for applying the method

is not too much expensive (2 or 3 times the time to copy/duplicate the corresponding light ver-

sion), al least this is true when an expert modeller applies it.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: 14 light business process models (our dataset)

RE Practice: N/A

RE Phase: Validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time document analysis results

Lesson ID: LL089 11 [Kong and Hayes, 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: PSVM does not perform significantly better than VSM in tracing.

Source: Experiment

Rationale: The automatic generation of traceability links attempts to reduce the burden of

228

www.manaraa.com

building requirements traceability matrices (RTMs) that will be vetted by a human analyst be-

fore use in verification and validation tasks such as criticality assessment or change impact

analysis. Information Retrieval (IR) techniques, notably the Vector Space Model (VSM), have

been used with some success to build textual artifact traceability matrices. A limitation of the

VSM is that it disregards word or term location and the relationship between words in the tex-

tual artifacts being traced.

Impact: Results showed that the PVSM had slightly higher MAP for two of the four datasets

used in the experiment. Upon reviewing the candidate links, a number of false links were

ranked high due to the presence of common terms but differed in one or two golden keywords.

The PVSM shares this limitation with VSM in that both models do not consider the semantics

of a sentence when weighting a document. The PVSM, however is more susceptible to over-

weighting these links since it is unable to determine the significance of the missing keyword

when detecting terms in close proximity.

Target Object: Tool

Type: Neutral

Expression: Implicit

Application Domain: NASA-provided CM-1 (a science instrument) project, Pine is an open

source email client, ChangeStyle is a Java- based style checker, EasyClinic is a collection of

software artifacts used in the development of a software system to manage a medical ambula-

tory.

Project size: The experiment uses datasets selected based on answer set availability. CM1Subset1

is a subset of the NASA-provided CM-1 (a science instrument) project containing 22 high-level

requirements, 53 low-level requirements, and 40 true links. Pine is an open source email client

that has 49 high-level requirements, 133 use cases, and contains 246 true links. ChangeStyle is

a Java- based style checker that has 32 high-level requirements, 17 test cases, and 23 true links.

EasyClinic is a collection of software artifacts used in the development of a software system

to manage a medical ambulatory. The experiment traces between the 30 use cases and 47 code

229

www.manaraa.com

classes in the collection, with 93 true links in the answerset.

RE Practice: Automatic tracing, Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experiment results

Lesson ID: LL090 11 [Morandini et al., 2011]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2011

Lesson: Use Tropos4AS instead of Tropos for requirements analysis.

Source: Controlled experiment

Rationale: Requirements Engineering (RE) is a well-known discipline that studies processes,

methods, languages and tools to support system engineers during the analysis of the require-

ments of the system they need to develop and maintain. Several goal-oriented modeling lan-

guages and methods (e.g., KAOS, i* and Tropos) have been proposed to analyze requirements

and to generate clear and meaningful requirements specifications.

Impact: Tropos4AS is more effective than Tropos in describing requirements of self-adaptive

systems, especially when the models are used by novice requirements engineers. Moreover,

we also ob- served that Tropos4AS helps in particular the novice users, who outperformed the

performance of expert Tropos modelers. Indeed, the performance of the expert Tropos model-

ers remained quite stable when using or not using the extensions provided by Tropos4AS.

Target Object: Technique/method

230

www.manaraa.com

Type: Positive

Expression: Implicit

Application Domain: Specifications of two soft- ware systems, which have some features of

self-adaptivity and are thus suitable for modeling with both treatments: a Patient Monitoring

Agent (PMA) and a Washing Machine Manager (WMM).

Project size: Twelve subjects, researchers and Ph.D. students working in a research center

RE Practice: Using modeling languages

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: FBK Center for Information Technology

Repeatability: First time experiment results

Lesson ID: LL091 11 [Salfischberger et al., 2011]

Journal: N/A

Conference: N/A

Workshop: IWSPM

Year: 2011

Lesson: Use the Functional Architecture Framework (FAF) to manage requirements.

Source: Case study

Rationale: As companies grow larger and gain more customers, the number of requests from

the customer side increases. Managing very large scale requirements management requires

special processes. Organizations need a structure to organize these requirements processes to

be able to satisfy the stakeholders.

Impact: Implementing the full FAF allows a very high volume of requirements to be managed

efficiently. An important factor in the implementation of the full FAF is the support of all de-

231

www.manaraa.com

partments.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: ERP Vendor

Project size: 70000 customers and 8000 employees. The database holds about 9000 market

requirements and 2500 corresponding product requirements.

RE Practice: Using a framework

RE Phase: Managing

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL092 11 [Svensson et al., 2011]

Journal: N/A

Conference: N/A

Workshop: IWSPM

Year: 2011

Lesson: Use the QUPER prototype tool for supporting release planning of quality require-

ments..

Source: Case study

Rationale: Release planning plays an important role for the success of a software product ven-

dor that develops software- intensive incremental products. It is important that the software

product is released to the market at the right time, and offers higher quality than the competi-

tors. However, an especially challenging problem for a software product vendor is to set the

232

www.manaraa.com

right quality target in relation to future market demands and competitor products.

Impact: The study showed that the tool provides a clear overview of the current market situa-

tion by the generated roadmaps, and to reach an alignment between practitioners, e.g., product

managers and developers, of what level of quality is actually needed. In general, all subjects

agreed that the QUPER prototype tool would help in the important shift of focus from FR to

QR by providing a clear and understandable representation of the market (competing products)

as a basis for QR.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Company that develops software and hardware for the mobile handset

market.

Project size: The case company has more than 5,000 employees and develops their products

for a global, competitive market using a product line approach. The companys requirements

database consists of more than 20,000 requirements where approximately 25% of the require-

ments are quality requirements. Five practitioners, three product managers, one project man-

ager, and one test manager participated in the tool evaluation.

RE Practice: N/A

RE Phase: Managing

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL093 11 [?]

Journal: N/A

233

www.manaraa.com

Conference: N/A

Workshop: MoDRE

Year: 2011

Lesson: Build sequence diagram using the Model-Driven Development.

Source: Case study

Rationale: Scenario modeling can be realized through different perspectives. In UML, scenar-

ios are often modeled with activity models, in an early stage of development. Later, sequence

diagrams are used to detail object interactions. The migration from activity diagrams to se-

quence diagrams is a repetitive and error-prone task. Model-Driven Development (MDD) can

help streamlining this process, through transformation rules. Since the information in the ac-

tivity model is insufficient to generate the corresponding complete sequence model, manual

refinements are required.

Impact: a decrease in the number of operations required to build and refine the sequence model

of approximately 64% when using MDD, when compared to the manual approach. The advan-

tages, from a quality point of view, include: (i) a reduction in the effort building the sequence

model, (ii) increased traceability among models (through the semi-automatic translation rules),

(iii) error prevention when migrating from different scenarios notations, and (iv) support for

reuse of sequence models design best practices, thus providing a good stepping stone for high

quality scenario modeling.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: A software system offering operations on photos, music and videos on

mobile devices

Project size: N/A

RE Practice: Using model-driven development

RE Phase: Specification

234

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL094 11 [Marincic et al., 2011]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2011

Lesson: Perform the following two non-formal steps for model validation: testing the model

itself by review, simulation and model-checking; and explaining the model to the model stake-

holders.

Source: Case study

Rationale: The result of a model-based requirements verification shows that the model of a

system satisfies (or not) formalised system requirements. The verification result is correct only

if the model represents the system adequately. No matter what modelling technique we use,

what precedes the model construction are non-formal activities. During these activities the

modeller has to learn how the system works, what the requirements are, and to decide what is

relevant to model and how to do it. Due to a partly non-formal nature of modelling steps, we

do not have a formal proof that the model represents the system adequately. The most we can

do is to increase the confidence in the model.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

235

www.manaraa.com

Application Domain: A company that produces printers for office use

Project size: A large company, with a few hundred people employed in research and develop-

ment department.

RE Practice: N/A

RE Phase: Validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL095 11 [?]

Journal: N/A

Conference: N/A

Workshop: re@run.time

Year: 2011

Lesson:Use the Boilerplates method for requirements elicitation and by explicitly modeling

the runtime requirements knowledge for further application using ontologies for knowledge

representation.

Source: Case study

Rationale: Current industrial automation systems are becoming more and more complex, and

typically involve different phases of engineering, such as design time and runtime. System

requirements, which are usually elicited during design time by engineers, currently are not

sufficiently represented at runtime, like the runtime enforcement of safety requirements for

industrial automation systems. Such kind of enforcement usually is very hard to model and

predict at de- sign time. Hence, the need exists to capture and manage safety requirements at

design time and runtime, since safety requirements of industrial automation systems may lead

236

www.manaraa.com

to high risks if not addressed properly.

Impact: Major result was that the Boiler- plates and explicit engineering knowledge are well

suited to capture and enforce runtime safety requirements of industrial automation systems.

Initial results show that the analysis of different scenarios of possible failures of the industrial

process plant model at runtime allows for a more efficient and effective elicitation and man-

agement of runtime safety requirements, which are not easily predicted or modeled at design

time.the usage of a quite common method for requirements elicitation, such as the Boilerplate

notation, generally enables an easier safety requirements elicitation at design time. On the

other hand side, the transformation from Boilerplate notation into if- then-else rules is intu-

itively understandable and can be used to check whether a system is really following a set of

rules using periodical rule checking mechanisms.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Educational model of an industrial process plant for enforcing safety

requirements at runtime

Project size: 2 scenarios

RE Practice: Using a framework

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating case study results

Lesson ID: LL096 11 [Chopra and Singh, 2011]

Journal: N/A

237

www.manaraa.com

Conference: N/A

Workshop:RES4

Year: 2011

Lesson: Use Colaba to design business processes.

Source: Case study

Rationale: Across-organizational processes naturally involve multiple stakeholders with dis-

tinct business interests. Yet, current process modeling approaches are conceptually centralized.

Impact: In this particular example, the seller and the buyer eventually arrive at a mutually ac-

ceptable proposal; in another instance, it may happen that they cannot. Nonetheless, stake-

holders would be better off at resolving conflicts armed with Colaba than without. This argu-

mentation instance, like all others, becomes part of the repository, and is available for future

reference. Sub- sequently, new organizations who have a similar purpose in mind may exploit

this knowledge for better designing their business processes, especially when guided by past

practice and design rationales.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Ace Semiconductors is a producer of silicon wafers used in the manu-

facturing of semiconductors. NanoCorp is manufacturer of semiconductors.

Project size: N/A

RE Practice: Using a social network

RE Phase: Negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Ace Semiconductors and NanoCorp.

Repeatability: First time evaluating case study results

238

www.manaraa.com

Lesson ID: LL097 11 [Hoffmann et al., 2011]

Journal: N/A

Conference: N/A

Workshop:RES4

Year: 2011

Lesson: Combine service-oriented requirements engineering with service bundling in a new

approach for the design of user-centric portals: first, identifying user needs and matching them

to existing adequate services provided by the organization; second, the decision makers negoti-

ate all services according to user wishes and effort expectancy and determine the functionality

of the portal; third, service bundling is used to build highly user-centric portal structures that

are derived from the users characteristic life events or demographic situations.

Source: Case study

Rationale: Portals are platforms combining services from various sources for various user

groups. Service bundling from marketing can serve as a new way to enable mass customiza-

tion of portal services for heterogeneous user groups using existing services.

Impact: This approach is promising because of the possibility to validate requirements with

the help of existing services. It also helps to determine the possible functionality of the portal

in a fast manner. The integration of the service provider in early stages of the development pro-

cess helps to avoid late and cost-intensive faults. Furthermore, the decision makers can base

their decision on single functionalities on estimated effort and users demands. In addition, the

new approach is supported through the user-centric development of portal structures based on

services to which decision makers are already committed.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

239

www.manaraa.com

Project size: The infrastructure of the university is comparable to that of other big organiza-

tions.

RE Practice: N/A

RE Phase: Elicitation, negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: The Kassel University

Repeatability: First time evaluating case study results

Lesson ID: LL098 11 [Pasquale and Spoletini, 2011]

Journal: N/A

Conference: N/A

Workshop:RES4

Year: 2011

Lesson: Use the FLAGS language to represent requirements as fuzzy temporal formulas and

identify partial violations at the temporal level and the monitoring framework to assess FLAGS

formulas at runtime.

Source: Experiment

Rationale: Service compositions are an important family of self-adaptive systems, which need

to cope with the variability of the environment (e.g., heterogeneous devices, changing context),

and react to unexpected events (e.g., changing components) that may take place at runtime. To

this aim, it is fundamental to continuously assess requirements while the system is executing

and detect partial mismatches or handle uncertainty. Detecting the entity of a violation is very

helpful, since it can guide the way applications adapt at runtime.

Impact: Generally we can claim that monitoring fuzzy requirements at runtime is feasible

since it introduces an overhead, in terms of monitoring time, that is slightly greater than that

240

www.manaraa.com

measured to monitor crisp formulas.

Target Object: Language

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: N/A

RE Practice: N/A

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time evaluating experiment results

Lesson ID: LL099 11 [Bahrs and Nguyen, 2011]

Journal: N/A

Conference: N/A

Workshop:RES4

Year: 2011

Lesson: Use the Smarter architecture & engineering (SmarterAE) approach for requirements

management. It is way of rethinking the requirements, architecture and systems engineering

lifecycles on SOA, Modernization and Transformation projects.

Source: Industrial experience

Rationale: Many project struggle with the so called requirements hand off. This is the situation

where requirements are documented in text and handed to a team for implementation. In the

majority of projects, the developers struggle with semantics, clarity and on time delivery. This

occurs on projects of various time durations and complexity from small embedded systems to

241

www.manaraa.com

large geographically dispersed systems of systems.

Impact: Reduction in costs by 33%. Reduction in time by 40%.Successful partitioning of

teams across time zones and organizations. Successful delivery of Claims Processing and Bor-

der Management applications in 30 days, from requirement to execution. Predicted savings

of 15, 25 and 40% over three years. 60% of projects producing the correct assets. Business

process assets more difficult to produced than all other business architecture assets. Asset types

and standards continuing to change

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Business Process Management (BPM) project. SOA project. Legacy

Modernization project. Transaction Processing project. Business Agility project. Model-

driven Architecture (MDA) project. Model-driven Architecture (MDA) project. Real-time

mission critical systems project. Product development project

Project size: SmarterAE is typically valuable in large complex enterprise-wide projects.

RE Practice: N/A

RE Phase: Elicitation, managing

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: IBM

Repeatability: Numerous projects and customers are using the SmarterAE approach over the

last two years.

Lesson ID: LL100 11 [Cortier et al., 2011]

Journal: N/A

Conference: N/A

242

www.manaraa.com

Workshop: REVOTE

Year: 2011

Lesson: Voting systems should of course guarantee the confidentiality of the votes (no one

should know that a voter has voted in a particular way) but also eligibility (only registered

voters can vote, at most once), fairness (the result reflects the actual votes), and verifiability

(voters can check that their votes have been counted).

Source: Case study

Rationale: In order to allow voters to vote from their home without using computers, voting

systems have been proposed to improve the standard two-envelope system. They consist of

somewhat hybrid systems, still using paper ballots but with barcodes (to facilitate the tallying

phase using barcode readers) and identifiers that should ensure that votes cannot be linked to

voters. They are typically used for elections with intermediate issues such as elections of repre-

sentatives in unions, companies or many councils. Up to our knowledge and surprisingly, these

systems have not been submitted to a careful security analysis (nor even design), in contrast to

electronic voting protocols. Some official guidelines nevertheless exist. For example in France,

the Commission Nationale de lInformatique et des Liberts (CNIL) which is an independent

administrative authority whose mission is to guarantee that data processing complies with hu-

man rights, private life, or individual freedoms has recently issued recommendations about

electronic voting. A similar recommendation has been issued for postal voting with barcodes.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Postal voting system

Project size: Election involving about 30,000 voters.

RE Practice: N/A

RE Phase: Elicitation

243

www.manaraa.com

Software Process: N/A

Project Date: Spring 2011

Recording Date: N/A

Organisation Name: Tagg Informatique

Repeatability: First time case study results

Lesson ID: LL101 11 [Gibson et al., 2011]

Journal: N/A

Conference: N/A

Workshop: REVOTE

Year: 2011

Lesson: Use operational protoyping when specifying voting systems interface requirements.

Source: Case study

Rationale: Poorly designed voting interfaces increase the effort required to vote and at worst

they may interfere with the voters ability to vote as intended. Further, voters prefer a short and

quick voting experience with a clear inverse relationship between effort and satisfaction.

Impact: A system that is developed without input from the targetted users has two main prob-

lems. Firstly, it is unlikely to do what the users would like it to do. Secondly, it is unlikely

that the users will be enthusiastic about its deployment. Users are often very good at criti-

cising a concrete system, whilst being unable to comment on abstract models. In particular,

a concrete system helps users to better understand and express their needs. As a secondary

benefit, a prototype can improve communication between the users and the developers. This

is vital where the problem domain and solution domain are separated by different languages

and concepts. In effect, a prototype acts like a common framework for discussion between the

two different groups. Finally, encouraging user feedback increases the likelihood that future

users will be enthusiastic about adopting the new system/technology. The main strength of our

system is in usability. All our trials have shown high usability scores when compared with

244

www.manaraa.com

other voting systems. An advantage of our hybrid system over the traditional paper system,

which it is designed to improve upon, is that the voter gets immediate feedback that their vote

is marked as intended. The degree of feedback is currently limited to informing the voter as to

whether their vote is considered, by the electronic system, to be valid, spoiled or blank. This

feedback was specifically introduced to address the problem of incoherency between the paper

and electronic counts with respect to identification of spoiled votes. Current trials are intended

to show that this feedback may assist the voter in having their intent correctly recorded. This

should demonstrate that the system is more accurate than a purely paper system.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Voting system

Project size: Election involving about 30,000 voters.

RE Practice: Prototyping

RE Phase: Elicitation, specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL001 12 [Yang et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Yang et al.’s automatic detection of uncertainty in natural language requirements

method to identify speculative sentences and determine the scope of uncertainty.

245

www.manaraa.com

Source: Evaluating Experiment

Rationale: Uncertainty in requirements documents has several undesirable effects. It can lead

to system behaviour that does not meet users’ expectations, if no proper analysis of the root

causes of the uncertainty is performed, and alternatives are not considered. It can also lead

to untestable requirements and makes it difficult to plan and estimate development costs. It

can cause developers to substitute their own preferences and expectations for the speculative

requirements. In short, speculative requirements that survive till the implementation phase are

potentially harmful.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: 11 full-text requirements documents in which uncertainty cues and their scopes

have been manually annotated according to established annotation guidelines

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experimental results

Lesson ID: LL002 12 [Arora et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

246

www.manaraa.com

Year: 2012

Lesson: Use Arora’s et. al method and algorithms for identifying and resolving feature inter-

actions early in the development life- cycle.

Source: Evaluating case study

Rationale: As new features are developed and integrated into the automobile, they interact

with already existing features, sometimes resulting in undesirable behaviours. These undesir-

able behaviours are referred to as feature interactions, and they result in uncertainties in the

system development process if not detected early in the development life-cycle.

Impact: Allows the specification of a system incrementally by gradually adding features and

system level details of how features interact with each other, identifying undesirable forms of

interactions, resolving them using scenarios, and checking for consistency of the system as a

whole. The final result of following our methodology is a consistent and unambiguous specifi-

cation of the system being specified.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Automotive

Project size: N/A

RE Practice: N/A

RE Phase: Specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Global General Motors R&D

Repeatability: First time case study results

Lesson ID: LL003 12 [Charrada et al., 2012]

247

www.manaraa.com

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Automatically identify outdated requirements using Charrada’s et al. method.

Source: Evaluating case study

Rationale: Keeping requirements specifications up-to-date when systems evolve is a manual

and expensive task. Soft- ware engineers have to go through the whole requirements document

and look for the requirements that are affected by a change. Consequently, engineers usually

apply changes to the implementation directly and leave requirements unchanged. Automati-

cally identifying outdated requirements reduces the effort and time needed for the maintenance

of requirements specifications significantly and thus helps preserve the knowledge contained

in them.

Impact: Identification of Requirements-Related Changes: Using our comparing tool, 33 classes

were identified, covering 12 of the 14 requirements-related changes. Among the 33 identified

classes, 26 actually contained parts of the 14 changes. The other 7 classes were simple refac-

torings. Thus, our approach achieved a precision of 26/33=79% and a recall of 12/14=85.7%.

Keyword Extraction and Tracing Results: The class tracing has a precision of 0.23 and a recall

of 0.23 while our approach has a precision 0.38 and a recall of 0.38, which is an improvement

of 66%. Furthermore, for a fixed recall value, the precision of our approach is at least twice as

good as for the class-based approach.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Medical care project

Project size: 40 uses cases. Two version: 10 and 11. Java code considered only.

RE Practice: Tracing

248

www.manaraa.com

RE Phase: Managing

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: North Carolina State University

Repeatability: First time case study results

Lesson ID: LL004 12 [Niu and Mahmoud, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Niu’s et al. approach for candidate link generation for the requirements tracing

process.

Source: Evaluating exploratory case study

Rationale: Modern requirements tracing tools employ information retrieval methods to auto-

matically generate candidate links. Due to the inherent trade-off between recall and precision,

such methods cannot achieve a high coverage without also retrieving a great number of false

positives, causing a significant drop in result accuracy. This approach improves the quality of

candidate link generation for the requirements tracing process.

Impact: Approach greatly outperforms the base- line in generating the candidate traceability

links for three requirements. Not only is recall maintained at a high level (larger than or equal

to .93) by using our approach, but precision is markedly increased.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Software-intensive platform that provides technological solutions for

249

www.manaraa.com

service delivery and workforce development in a specific region of the United States.

Project size: 6 business requirements and Java code base containing over 500 classes.

RE Practice: Tracing

RE Phase: N/A

Software Process: Goal-oriented and agile process.

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL005 12 [Gordon and Breaux, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use the requirements ’water marking’ framework to align and reconcile requirements

from multiple jurisdictions (municipalities, provinces, nations).

Source: Evaluating case study

Rationale: Companies that own, license, or maintain personal information face a daunting

number of privacy and security regulations. Companies are subject to new regulations from

one or more governing bodies, when companies introduce new or existing products into a ju-

risdiction, when regulations change, or when data is transferred across political borders. The

approach is used to align and reconcile requirements from multiple jurisdictions (municipali-

ties, provinces, nations) to produce a single high or low standard of care.

Impact: Reduced the number of requirements a company must comply with by 76% across 8

jurisdictions.

Target Object: Policy

250

www.manaraa.com

Type: Positive

Expression: Implicit

Application Domain: U.S. data breach notification laws

Project size: Eight regulations based on guidance from a legal expert with 7 years of privacy

and security law expertise to highlight regulations that have been a priority for U.S. companies

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL006 12 [Maxwell et al., 2012a]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use the Adaptability Framework to aid software engineers in predicting what areas

of a proposed rule are most likely to evolve, allowing engineers to begin building towards the

more stable sections of the rule.

Source: Evaluating case study

Rationale: Over time, laws change to meet evolving social needs. Requirements engineers that

develop software for regulated domains, such as healthcare or finance, must adapt their soft-

ware as laws change to maintain legal compliance. In the United States, regulatory agencies

will almost always release a proposed regulation, or rule, and accept comments from the pub-

lic. The agency then considers these comments when drafting a final rule that will be binding

on the regulated domain.

251

www.manaraa.com

Impact: This framework can aid software engineers in predicting what areas of a proposed

rule are most likely to evolve, allowing engineers to begin building towards the more stable

sections of the rule. 9 changes that we accurately predicted (true positives), 5 changes we pre-

dicted that were not accurate (false positives), 104 legal statements for which we predicted no

change and for which no change occurred (true negatives), and 33 legal statements for which

we predicted no change and which changed in the final rule (false negatives). Our framework

correctly predicted 11 true positives and 104 true negatives for changes, with 5 false positives

and 33 false negatives, or 115 correct predictions out of 153 total predictions, or 75% correct.

This first analysis correctly predicted 11/16 (68%) of the areas of change, and 104/109 (95%)

of the areas of no change, assisting software engineers to prioritize areas for development prior

to release of the final rule.

Target Object: Policy

Type: Positive

Expression: Implicit

Application Domain: Healthcare in the US

Project size: The interim and final versions of the Initial Set of Standards, Implementation

Specifications, and Certification Criteria for Electronic Health Record Technology (hereafter

the EHR Certification Rule). The EHR Certification Rule is 4,736 words long and describes

requirements that an EHR must satisfy in order to be certified under the Meaningful Use pro-

gram

RE Practice: N/A

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Health Information Technology: Initial Set of Standards, Implementa-

tion Specifications, and Certification Criteria for Electronic Health Record Technology.

252

www.manaraa.com

Repeatability: First time case study results

Lesson ID: LL007 12 [Yi et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Yi’s et al. approach to mine cross-tree binary constraints in the construction of

feature models.

Source: Evaluating experiment

Rationale: Identifying features and then building a feature tree takes a lot of effort, and many

semi-automated approaches have been proposed to help the situation. However, finding cross-

tree constraints is often more challenging which still lacks the help of automation.

Impact: The approach successfully finds binary constraints at a high recall (near 100% in most

cases). The precision is unstable and dependent on the test feature models. In most cases the

requires constraints are better mined than the excludes constraints; a possible reason is that

the rationale behind excludes is often beyond feature descriptions. Continuous feedback from

human analysts benefits the mining process, especially for mining excludes constraints. There-

fore in practice, our classifier should be used in an interactive way, that is, human analysts

check only a few constraint candidates after each turn of mining, and then the classifier repeats

the train-optimize-test process again.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Healthcare in the US

Project size: The weather station feature model: 22 features, 196 feature pairs, 6 requires, and

5 excludes. Graph Product Line feature model: 15 features, 91 feature pairs, 8 requires, and 5

253

www.manaraa.com

excludes

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: S.P.L.O.T. repository

Repeatability: First time experimental results

Lesson ID: LL008 12 [Shaker et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use feature-oriented requirements modelling language (FORML) for modelling the

behavioural requirements of a software product line.

Source: Evaluating exploratory and confirmatory case study

Rationale: To ease the task of adding new features to a set of existing requirements. feature

modularity eases system development and evolution because features can be developed in iso-

lation, in parallel, and by third-party vendors.

Impact: Decomposes a product lines requirements into feature modules, and provides language

support for specifying tightly-coupled features as model fragments that extend and override ex-

isting feature modules.

Target Object: Technique/method

Type: Neutral

Expression: Implicit

Application Domain: Automotive and telephony

254

www.manaraa.com

Project size: The automotive case study is an extension of AutoSoft and is adapted from a GM

Feature Technical Specification for a family of automotive software features. The case study

includes 11 features. The telephony case study is adapted from the Second Feature Interaction

Contest, and comprises a telephone-service SPL with 15 features.

RE Practice: N/A

RE Phase: Specification, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: General Motors

Repeatability: First time case study results

Lesson ID: LL009 12 [Greenyer et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Greenyer’s et al.technique for the scenario-based specification of component in-

teractions based on Modal Sequence Diagrams.

Source: Evaluating case study

Rationale: Modern technical systems typically consist of multiple components and must pro-

vide many functions that are realized by the complex interaction of these components. More-

over, very often not only a single product, but a whole product line with different compositions

of components and functions must be developed. To cope with this complexity, it is important

that engineers have intuitive, but precise means for specifying the requirements for these sys-

tems and have tools for automatically finding inconsistencies within the requirements, because

these could lead to costly iterations in the later development.

255

www.manaraa.com

Impact: When using our ordering pattern, it turns out that the dedicated algorithm outperforms

the enumerative method (Enum.) except when P1 and the 15-feature case are considered. Our

theory is that the enumerative approach is more efficient for bigger specifications with a high

feature- to-MSD ratio. In practice, however, it is more likely to have several MSDs per feature

as in this technical example. Thus we expect our approach to be more efficient in most practical

cases, but further evaluations are required. The enumerative algorithm does not return a con-

cise formula that identifies the bad products, so the dedicated method also yields improvement

in usability.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Automotive

Project size: N/A

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: RailCab

Repeatability: First time case study results

Lesson ID: LL010 12 [Gross and Doerr, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: What are typical artifact types that should be contained in an SRS from the viewpoint

256

www.manaraa.com

of downstream development roles in order to accomplish their tasks? descriptions of goals and

technical requirements are considered to be the most important artifact types, directly followed

by descriptions of quality requirements, data requirements, and interaction and system func-

tion descriptions. Also, stakeholder and task descriptions were identified as being important,

although slightly less important than other artifacts.

Source: Case study

Rationale: Software requirements specifications play a crucial role in software development

projects. Especially in large projects, these specifications serve as a source of communication

and information for a variety of roles involved in downstream activities like architecture, de-

sign, and testing. In order to create high-quality requirements specifications that fit the specific

demands of successive document stakeholders, we need to better understand the particular in-

formation needs of downstream development roles.

Impact: All information that is important for architecture design was available. All important

information is contained in a personal view. All important information can be found by brows-

ing and bookmarking of important artifacts.

Target Object: Artifact: requirements

Type: Negative

Expression: Implicit

Application Domain: Eye-tracking case study: a real software project based on TORE

Project size: The specification (SRS) comprised three Word documents: Domain Require-

ments Specification (133 pages), basically comprising artifacts like stakeholder descriptions,

goal descriptions, task descriptions, workflow descriptions (both as-is processes & to-be pro-

cesses), as well as data descriptions. System Requirements Specification (140 pages), con-

taining detailed interaction descriptions in the form of use cases, supplemented with detailed

quality requirements, interaction data and technical requirements specifications. Annex Docu-

ment (82 pages) comprising supplementary materials such as the elicitation guidelines used.

RE Practice: N/A

257

www.manaraa.com

RE Phase: Elicitation, specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL011 12 [Gross and Doerr, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Which notation should be used to specify artifacts of a certain type? Graphical nota-

tions are very useful for architects. If textual descriptions are used, the descriptions should be

structured (e.g., by using bullets) with important aspects being highlighted.

Source: Case study

Rationale: Different roles have different information needs.

Impact: The representation of the information is suitable for each role (e.g., UML diagrams)

dependent on the activities.

Target Object: Tool

Type: Negative

Expression: Implicit

Application Domain: Eye-tracking case study: a real software project based on TORE

Project size: The specification (SRS) comprised three Word documents: Domain Require-

ments Specification (133 pages), basically comprising artifacts like stakeholder descriptions,

goal descriptions, task descriptions, workflow descriptions (both as-is processes & to-be pro-

cesses), as well as data descriptions. System Requirements Specification (140 pages), con-

258

www.manaraa.com

taining detailed interaction descriptions in the form of use cases, supplemented with detailed

quality requirements, interaction data and technical requirements specifications. Annex Docu-

ment (82 pages) comprising supplementary materials such as the elicitation guidelines used.

RE Practice: N/A

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL012 12 [Gross and Doerr, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: While descriptions of interactions, system functions, quality and technical require-

ments, stakeholders and goals were still considered as being (very) important, data require-

ments, as well as task and workflow descriptions were considered as less important. As-is

workflows were even rated as totally unimportant.

Source: Questionnaire

Rationale: Software requirements specifications play a crucial role in software development

projects. Especially in large projects, these specifications serve as a source of communication

and information for a variety of roles involved in downstream activities like architecture, de-

sign, and testing. In order to create high-quality requirements specifications that fit the specific

demands of successive document stakeholders, we need to better understand the particular in-

259

www.manaraa.com

formation needs of downstream development roles.

Impact: All information that is important for architecture design was available. All important

information is contained in a personal view. All important information can be found by brows-

ing and bookmarking of important artifacts.

Target Object: Artifact: requirements

Type: Negative

Expression: Implicit

Application Domain: University: Software Engineering Course

Project size: The participants of this study were 13 students (9 computer science students and

4 economic science students with specialization in computer science) enrolled in a practical

software engineering course

RE Practice: N/A

RE Phase: Elicitation, specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Kaiserslautern

Repeatability: First time questionnaire results

Lesson ID: LL013 12 [Gross and Doerr, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: All artifact types were considered as being (very) important from the usability experts

viewpoint with one exception: Specifications of interaction data and domain data were consid-

260

www.manaraa.com

ered as being rather unimportant.

Source: Questionnaire

Rationale: Software requirements specifications play a crucial role in software development

projects. Especially in large projects, these specifications serve as a source of communication

and information for a variety of roles involved in downstream activities like architecture, de-

sign, and testing. In order to create high-quality requirements specifications that fit the specific

demands of successive document stakeholders, we need to better understand the particular in-

formation needs of downstream development roles.

Impact: All information that is important for architecture design was available. All important

information is contained in a personal view. All important information can be found by brows-

ing and bookmarking of important artifacts.

Target Object: Artifact: requirements

Type: Negative

Expression: Implicit

Application Domain: Tutorial

Project size: The participants of this study were ten usability experts who attended a tutorial

session conducted by one of the authors.

RE Practice: N/A

RE Phase: Elicitation, specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time questionnaire results

Lesson ID: LL014 12 [Gross and Doerr, 2012]

261

www.manaraa.com

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Usability engineers prefer relevant data to be specified together with the interaction

descriptions (e.g., use case descriptions) rather than to be specified separately, e.g., in the form

of a data model. visual representations of artifact types like goal descriptions, workflow de-

scriptions are preferred over textual descriptions and that persona descriptions are very useful

to support usability experts in their work.

Source: Questionnaire

Rationale: Different roles have different information needs.

Impact: The representation of the information is suitable for each role (e.g., UML diagrams)

dependent on the activities.

Target Object: Artifact: requirements

Type: Negative

Expression: Implicit

Application Domain: Tutorial

Project size: The participants of this study were ten usability experts who attended a tutorial

session conducted by one of the authors.

RE Practice: N/A

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time questionnaire results

262

www.manaraa.com

Lesson ID: LL015 12 [Gross and Doerr, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Descriptions of supported stakeholders, information about their roles and responsibil-

ities, frequent activities, typical work environment, age, gender, etc. is really helpful.

Source: Questionnaire

Rationale: Important information is missing in the SRS. Important information cant be found.

Impact: All information that is important for architecture design was available. All important

information can be found by browsing and bookmarking of important artifacts.

Target Object: Artifact: requirements

Type: Negative

Expression: Implicit

Application Domain: Tutorial

Project size: The participants of this study were ten usability experts who attended a tutorial

session conducted by one of the authors.

RE Practice: N/A

RE Phase: Elicitation, specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time questionnaire results

263

www.manaraa.com

Lesson ID: LL016 12 [Niknafs and Berry, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: The effectiveness of a team in requirements idea generation is affected by the teams

mix of domain familiarities.

Source: Controlled experiment

Rationale: The effectiveness of requirements engineering activities depends at least partially

on the individuals involved. One of the factors that seems to influence an individuals effec-

tiveness in requirements engineering activities is knowledge of the problem being solved, i.e.,

domain knowledge. While a requirements engineers having in-depth domain knowledge helps

him or her to understand the problem easier, he or she can fall for tacit assumptions of the

domain and might overlook issues that are obvious to domain experts.

Impact: Domain ignorance is effective in helping to generate at least two types of quality ideas,

the relevant ideas and the feasible ideas.

Target Object: RE analysts

Type: Neutral

Expression: Implicit

Application Domain: University

Project size: Teams of size 3. Three members per team allows 4 types of teams: 3I: a team

consisting of 3 DIs and 0 DAs, 2I: a team consisting of 2 DIs and 1 DAs, 1I: a team consisting

of 1 DIs and 2 DAs, 0I: a team consisting of 0 DIs and 3 DAs.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

264

www.manaraa.com

Recording Date: N/A

Organisation Name: University of Waterloo

Repeatability: First time experimental results

Lesson ID: LL017 12 [Niknafs and Berry, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: The effectiveness of a team in requirements idea generation is affected by the teams

industrial experience.

Source: Controlled experiment

Rationale: The effectiveness of requirements engineering activities depends at least partially

on the individuals involved. One of the factors that seems to influence an individuals effec-

tiveness in requirements engineering activities is knowledge of the problem being solved, i.e.,

domain knowledge. While a requirements engineers having in-depth domain knowledge helps

him or her to understand the problem easier, he or she can fall for tacit assumptions of the

domain and might overlook issues that are obvious to domain experts.

Impact: Each team with 12 years of industrial experience performed a bit worse than any team

with no industrial experience at all. Team performance in requirements idea generation drops

dramatically for the teams with more than 2 years of industrial experience.

Target Object: RE analysts

Type: Neutral

Expression: Implicit

Application Domain: University

Project size: Teams of size 3. Three members per team allows 4 types of teams: 3I: a team

265

www.manaraa.com

consisting of 3 DIs and 0 DAs, 2I: a team consisting of 2 DIs and 1 DAs, 1I: a team consisting

of 1 DIs and 2 DAs, 0I: a team consisting of 0 DIs and 3 DAs.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Waterloo

Repeatability: First time experimental results

Lesson ID: LL018 12 [Lutz et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Lamsweerdes goal-oriented requirements modeling to identify, specify, and an-

alyze DNA nanodevices, and use PRISM model checking to verify both common properties

across the family and properties that are specific to individual products.

Source: Illustrative example

Rationale: Challenges to doing requirements engineering in this domain include the error-

prone nature of nanodevices carrying out their tasks in the probabilistic world of chemical

kinetics, the fact that roughly a nanomole (a 1 followed by 14 0s) of devices are typically

deployed at once, and the difficulty of specifying and achieving modularity in a realm where

devices have many opportunities to interfere with each other.

Impact: Use of goal-oriented requirements engineering methods improved the modeling and

analysis of requirements for a product family of sensing nanodevices by revealing new failure

266

www.manaraa.com

modes and facilitating reuse.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: DNA nanotechnology

Project size: Product family of DNA nanodevices, i.e., a set of nanodevices that have a high

degree of commonality and some key variations among them]. This product family is small,

consisting initially of just three kinds of DNA origami pliers, nanomechanical devices devel-

oped to sense (detect) the presence of target molecules in a solution.

RE Practice: Use of PRISM model checker

RE Phase: Elicitation, analysis, validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time application results

Lesson ID: LL019 12 [Cleland-Huang et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Cleland-Huang’s et al. race recommender system which pushes recommenda-

tions to project stakeholders as they create or modify traceable artifacts.

Source: Illustrative example and simulation

Rationale: In many software intensive systems traceability is used to support a variety of soft-

267

www.manaraa.com

ware engineering activities such as impact analysis, compliance verification, and requirements

validation. However, in practice, traceability links are often created towards the end of the

project specifically for approval or certification purposes. This practice can result in inaccurate

and incomplete traces, and also means that traceability links are not available to support early

development efforts.

Impact: Tracking trace obligations and generating trace recommendations throughout the ac-

tive phases of a project can lead to early construction of traceability knowledge. Establishing

lower threshold values for generating traceability links, creates more recommendations, results

in traceability knowledge being constructed earlier in the project, delivers a higher percentage

of useful recommendation events, but requires the developer to evaluate more traceability links

per recommendation.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Robotic system for supporting arm rehabilitation

Project size: The system included 6 hazards and 30 associated faults, a subset of which are

depicted in Table II. It also included 40 functional requirements and 28 classes modeled in

Enterprise Architect.

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time simulation results

268

www.manaraa.com

Lesson ID: LL020 12 [Knauss et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Knauss’ et al. auotmatic classifier to detect and classify clarification communica-

tion patterns.

Source: Evaluating case study

Rationale: In current project environments, requirements often evolve throughout the project

and are worked on by stakeholders in large and distributed teams. Such teams often use online

tools such as mailing lists, bug tracking systems or online discussion forums to communicate,

clarify or coordinate work on requirements. In this kind of environment, the expected evo-

lution from initial idea, through clarification, to a stable requirement, often stagnates. When

project managers are not aware of underlying problems, development may pro- ceed before

requirements are fully understood and stabilized, leading to numerous implementation issues

and often resulting in the need for early redesign and modification.

Impact: Support managers in identifying requirements that exhibit problematic patterns of

communication. Our method is not only intended for real- time application in a project to

help diagnose requirements under development, but also to enhance project specific informa-

tion. First, software practitioners can apply this method to analyze historical communication

records and identify a catalogue of patterns in their project or organization. This may reveal

particular communication practices that are process specific, or identify unexpected work prac-

tices. This information supports managers in decision-making with respect to supporting tools

or process methodologies. Second, the application in real-time of our automatic pattern classi-

fier to analyze current ongoing requirements discussions supports managers in examining the

health of a requirement development based on the trajectory of clarification relative to other

communication about the requirement. Project specific information such as development pro-

269

www.manaraa.com

cess, communication practices and tools allow the manager to decide whether the respective

requirement does need attention and thus make timely decisions.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: Software development environment

Project size: IBM Rational Team Concert (RTC) is a collaborative software development en-

vironment built on the JazzTMarchitecture. It integrates its own source-code control system,

an issue-tracking system, and collaborative development tools. the RTC development team

involved 151 active developers distributed over 16 different sites located in the United States,

Canada, and Europe.

RE Practice: N/A

RE Phase: Analysis

Software Process: The project uses the agile and iterative Eclipse Way development process

with six-week iteration cycles.

Project Date: N/A

Recording Date: N/A

Organisation Name: IBM

Repeatability: First time case study results

Lesson ID: LL021 12 [Tawhid et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Model outcome-based regulations with the Goal-oriented Requirement Language

270

www.manaraa.com

(GRL), generate questionnaires for the regional inspection activities where some of the ques-

tions target compliance and performance with a qualitative scale (rather than a binary assess-

ment as in prescriptive regulations), and input the information collected by the inspection ac-

tivities back into the model for compliance analysis.

Source: Industrial experience

Rationale: Ease the compliance burden on regulated parties and address some of the following

issues: These regulations are about how things are to be done. Defining a prescriptive regime

that applies equally well across a non-homogeneous group of regulated parties is challenging;

Inspection activities assess compliance to specific regulations in a binary way (yes/no), which

means it is hard to determine how close/far an organization is from being compliant, and how

significant this is from a performance or effectiveness point of view.

Impact: This outcome-based approach is expected to help get a more precise understanding

of who complies with what, while highlighting opportunities for improving existing regulatory

elements. Improved accuracy. In an outcome-based context, a model much more adequately

captures the interactions of potential solutions than natural language regulations. Furthermore,

the model is an essential tool in discovering which measurements are needed to ensure com-

pliance. OPF places requirements on goal-oriented modeling that requires changes to the GRL

metamodel, introducing greater flexibility when converting real-world values into GRL evalu-

ation values. a main lesson learned is that introducing a model-based requirement engineering

process to regulation drafting requires cultural change from all involved stake- holders.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Aviation transportation

Project size: N/A

RE Practice: N/A

RE Phase: Analysis

271

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time case study results

Lesson ID: LL022 12 [Chernak, 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use RCT (Requirements Composition Table) in software development projects for

performing software change impact analysis for new releases.

Source: Industrial experience

Rationale: Commonly for complex applications, any particular team member may not have

a complete knowledge and holistic view of the application functionality. For critical applica-

tions, a QA team commonly develops over time a sizable suite of regression tests and uses it

for testing new releases. However, the project team frequently does not have a complete un-

derstanding of the test coverage provided by the regression suite and, specifically, where the

coverage gaps are.

Impact: Understanding the impact of changes. Commonly, prior to using an RCT to perform

change impact analysis the first time, the author asks developers and testers to perform this task

the way that they have always done it and compile a list of impacted application features. The

team then conducts a formal change impact analysis session using the RCT. The team com-

pares the result of the formal RCT-driven analysis with the initial list of impacted features. The

RCT-driven analysis frequently shows a much more complete (up to 50%) picture of the impact

272

www.manaraa.com

than does the initial list. Commonly, the initial list includes only core features and overlooks

crosscutting concerns impacted by changes. Such a comparison is a good illustration of the

RCT techniques effectiveness and can help the team to see its benefits.

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: Investment banks

Project size: RCT technique has been implemented for over a dozen Wall Street projects at

three global investment banks. These projects included equity, fixed-income, and prime bro-

kerage trading applications. There were three categories of sponsors of these engagements:

1. developers who needed to improve change impact analysis and better plan new releases, 2.

testers who needed to assess coverage and identify gaps in their existing regression suites, and

3. business analysts, hired for renovation projects, who needed a holistic view of the legacy

system to be replaced with the new application.

RE Practice: N/A

RE Phase: Analysis

Software Process: Traditional, use-case-driven or agile approaches.

Project Date: N/A

Recording Date: N/A

Organisation Name: Wall Street

Repeatability: First time case study results

Lesson ID: LL023 12 [?]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

273

www.manaraa.com

Year: 2012

Lesson: Categorize requirements in large systems engineering and integration project com-

prised of not only software but also hardware and activities in other disciplines into: Equipi-

ment, Software, Dtandards, Functional, Constraint, Non-Functional, Location, Interface.

Source: Industrial experience

Rationale: The available set of requirement categories was not sufficient for our project.

Impact: Support the following roles and their responsibilities: Requirement engineers, System

designers, Purchasing staff, Integration manager, Project managers, Compliance manager.

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: System integration project that involves electrical, mechanical, civil,

communication and power engineering.

Project size: The system consists of not only software, but also hardware such as HVAC equip-

ment, fire detection and suppression, telephone switches, routers, CCTV cameras, PA speakers,

ductwork and fiber cable. The software mainly focuses on monitoring and controlling of the

equipment. The software development represents roughly 30% of the entire project effort. The

hardware portion of the project task includes vendor selection, purchasing, installation, work

site management, construction, and inspection. Another major characteristic of the project is

that it is constrained by a large contract (i.e., contract requirements) which has about 4000

clauses.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

274

www.manaraa.com

Repeatability: First time case study results

Lesson ID: LL024 12 [?]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Do not perform the categorization on the contract requirements. Instead, we first clar-

ified and refined the contract requirements into more proper technical requirements. Then we

did the categorization on the technical requirements.

Source: Industrial experience

Rationale: The contract requirements are often not proper requirements in our project, the fact

that a requirement can belong to multiple categories was a serious problem that led to much

confusion.

Impact: Since we did not need to categorize the contract requirements in the new process, we

also saved time reviewing those categorizations. In a contract-based project, such a review in-

volves customers and many other stakeholders so the time savings is quite significant (e.g., 1-

2 weeks). Another benefit from categorizing only technical requirements was that we avoided

reviewing the consistencies between the categorizations of the contract requirements and the

technical requirements. When using the old process, we needed to ensure the categorizations of

technical requirements were consistent with the categorizations of the contract requirements.

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: The system integration project we worked on involves electrical, me-

chanical, civil, communication and power engineering.

275

www.manaraa.com

Project size: The system consists of not only software, but also hardware such as HVAC equip-

ment, fire detection and suppression, telephone switches, routers, CCTV cameras, PA speakers,

ductwork and fiber cable. The software mainly focuses on monitoring and controlling of the

equipment. The software development represents roughly 30% of the entire project effort. The

hardware portion of the project task includes vendor selection, purchasing, installation, work

site management, construction, and inspection. Another major characteristic of the project is

that it is constrained by a large contract (i.e., contract requirements) which has about 4000

clauses.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time case study results

Lesson ID: LL025 12 [Berenbach et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use the Unified Requirements Modeling Language (URML) for requirements mod-

elling during elicitation.

Source: Industrial experience

Rationale: Customer processes and product requirements were sufficiently complex to warrant

modeling. During modeling sessions however problems were experienced with existing mod-

276

www.manaraa.com

eling languages and accompanying tools. Inability to connect products, product lines, features,

and design models. Inability to connect goals, features, and requirements. Inability to capture

hazards and threats in a model during early requirements elicitation. Lack of clear delineation

of customer processes and system use cases, and overloading of the rectangle.

Impact: Integration of goals, features, and requirements enables resolution of conflicts be-

fore implementation. Integration of product line, features, and requirements helps with impact

analysis of product line variation points. Integration of processes and dangers helps with iden-

tification of error prone processes. The language should support control and information flow.

Using an UML profile might not be the optimal way to enable tool support for a domain-

specific modeling language.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Energy, software platform, mail sorting system for the U.S. Postal Ser-

vice (USPS) (not exhaustive)

Project size: 6 core requirements from different projects conducted at Siemens

RE Practice: Modeling

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time case study results

Lesson ID: LL026 12 [Mendizabal et al., 2012]

Journal: N/A

277

www.manaraa.com

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Mendizabal’s et al. practical approach for requirements elicitation and prioritiza-

tion based on realistic user behaviors observation.

Source: Industrial experience

Rationale: N/A

Impact: Reduced the number of meetings with stakeholders and helped achieving consensus on

prioritized requirements easily and effortlessly. Another important finding was that groups of

stakeholders (located in different countries and assuming different responsibilities to the appli-

cation) agreed with most requirements proposed.(i) reduction on time spent arguing internally

over individual requirements; (ii) prevention of rigid and long negotiations with stakeholders

and project team; (iii) conception of a preliminary requirements list that serves as a guide for

reaching consensus among stakeholders on strategic business value; (iv) production of succinct

documentation and artifacts that confer transparency to the requirements elicitation and priori-

tization process.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: The web based application is responsible for managing distributions

packages with related material for the whole line of products of the company. Those distribu-

tions packages contain hardware drivers, operating systems, or any content related to a specific

product (eg. laptop, server, etc).

Project size: Several features are available and different teams work on very specific parts of

the system. In terms of application usage, the majority of accesses come from Asia and Amer-

ica. There is also a regular use from users located in Europe, but in minor scale. Due to the

wide geographic spectrum of users and differences in timing zones, the application does not

278

www.manaraa.com

present idle periods of usage. There are about 1200 users accessing the application per day,

and approximately 130 users accessing it per hour. During working days the minimum number

of concurrent users observed was around 50 and the maximum number reached 231 users at

the same hour.

RE Practice: N/A

RE Phase: Elicitation, Prioritisation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Dell

Repeatability: First time case study results

Lesson ID: LL027 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use the adjustable requirements reuse approach where requirements can be adjusted

without independently creating and storing the different variants of the requirement.

Source: Industrial experience

Rationale: In direct reuse the focus is on keeping this relationship and reusing requirements

exactly as they are. To enable this method, it is necessary to separate requirements into parts

that allow each project to select exactly the content and variation it needs. When working in

a project, if the user would like to adjust an existing requirement or enter a variation of it,

he or she shall adjust the company requirement or create a new variable part in the company

repository, and then map it to the project. However, the users tend not to do this. In practice,

279

www.manaraa.com

they only add new project specific requirements that do not end up being added to the company

requirements.

Impact: Using the adjustable approach the quality and readability of each requirement is im-

proved since it is not split up to a general and a variable part. Since it is not required to

document every variation in a separate node it keeps the structure of the requirements much

more simple. Furthermore, not being bound by a rigorous change process should enable the

users to make continuous improvements to the requirements. The main result is the second

project was able to reuse in total over 80% of the requirements they documented. 43% of the

requirements are directly reused but 38% are reused with adjustments. By allowing adjustable

reuse we enable a higher level of requirement reuse than would have been possible through

previous practice. This approach was found to be effective when the domain maturity is low

and the significant set of requirements were changed from project to project.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Solar

Project size: The first project to document requirements, documented about 530 requirements.

The RS was ready in 21 weeks and it is estimated that around 6000 person hours were used for

the job.

RE Practice: Reuse

RE Phase: Elicitation, Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss Solar Inverters

Repeatability: Industry results

280

www.manaraa.com

Lesson ID: LL028 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use the Direct Requirements Reuse approach for requirements elicitation.

Source: Industrial experience

Rationale: When Word documents were “clone&owned, it was easy to fix a little here and

there and everywhere in specifications, code, tests, but no cross- product compatibility could

be guaranteed.

Impact: Reusing requirements without adjustments gives a clearer definition of new products.

With present focus, each feature is evaluated, and only the defined, value- adding features are

updated. Separating the general part and the defined variance of the product family, enables

building specific dependencies in the reusable requirement model, identifying how a specific

requirement variant is related to another. This allows for capturing engineering knowledge into

the model and prevents users from making invalid selections. Direct reuse furthermore enabled

structured coding and testing. When SW requirements are reused, the underlying architecture

and code can also be reused, and it makes more sense to automate unit- and system-testing,

when the same asset can be used untouched for a number of products. In other words, for the

same effort, more features and test coverage can be obtained. Based on our experience, one can

achieve much faster time to market and more reliable quality as a direct result of the approach

taken. This approach allows high reuse potential and significant savings for stable domains,

where most requirements tend to be small additions or minor changes of existing requirements.

Target Object: Technique/method

Type: Negative

Expression: Implicit

281

www.manaraa.com

Application Domain: Drives

Project size: Four technology experts in different fields were stationed in Beijing and local

staff were hired in for the twofold task of creating a new product family and building up an

independent development site.

RE Practice: Reuse

RE Phase: Elicitation, Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss Drives

Repeatability: Industry results

Lesson ID: LL029 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Define a process for maintaining and cleaning up legacy requirements by document-

ing the rationale for each requirement.

Source: Industrial experience

Rationale: It is difficult to evaluate the relevance of requirements, without knowledge of why

they were originally introduced.

Impact: Ensures backward compatibility for all products in the drives domain.

Target Object: Technique/method

Type: Negative

Expression: Implicit

282

www.manaraa.com

Application Domain: Solar, drives

Project size: N/A

RE Practice: N/A

RE Phase: Specification, Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss

Repeatability: Industry results

Lesson ID: LL030 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Structure the company repository so that some requirements can be shared by the

whole company or business segment, whereas others are only shared between similar product

lines.

Source: Industrial experience

Rationale: Some requirements are product or business area specific, whereas others are company-

or even world-wide defined and updated. Examples could be reliability measures and certifica-

tion versus domain specific application and features.

Impact: Easier sharing of requirements.

Target Object: Technique/method

Type: Neutral

Expression: Explicit

283

www.manaraa.com

Application Domain: Solar, drives

Project size: N/A

RE Practice: N/A

RE Phase: Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss

Repeatability: Industry results

Lesson ID: LL031 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Handle variability by breaking larger requirements into smaller pieces.

Source: Industrial experience

Rationale: N/A

Impact: Fine- grained requirements allow facilitating a large range of variability, but are hard

to maintain.

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: Solar, drives

Project size: N/A

RE Practice: N/A

284

www.manaraa.com

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss

Repeatability: Industry results

Lesson ID: LL032 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Do not model all the constraints into the requirements model.

Source: Industrial experience

Rationale: Many of the possible combinations of requirements are illegal in a way that such

combination does not make any sense in terms of the application domain, marketing or even

basic physics.

Impact: If one would model all the constraints so that only current products can be derived

from the model, it would become fragile, and break when facing evolution. This would signif-

icantly increase the evolution cost for a limited derivation time benefit.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Solar, drives

Project size: N/A

RE Practice: Modeling

RE Phase: Specification, documentation

285

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss

Repeatability: Industry results

Lesson ID: LL033 12 [Hauksdottir et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Tailor the requirements reuse approach to the application domain.

Source: Industrial experience

Rationale: The volatility of the domain has a profound effect on how requirements reuse ini-

tiatives should be done.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Solar, drives

Project size: N/A

RE Practice: Reuse

RE Phase: Elicitation, Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danfoss

286

www.manaraa.com

Repeatability: Industry results

Lesson ID: LL034 12 [Kukreja et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Use Kukreja’s et al. approach for selecting an appropriate requirements prioritization

framework.

Source: Industrial experience

Rationale: Simple techniques do not lend themselves well to incorporating change requests

i.e. when a new change request is received, it is difficult to ascertain its value and the need

for incorporating it within the current release. Requirements engineers usually engage in ex-

tended negotiations with the client to understand the true priority of the requirement. There

is no model to insert a requirement and see how it compares to the existing ones, to better

understand its true priority and channelize the negotiation effort accordingly.

Impact: Satisfies the need for standardizing value centric prioritization practices across the

organization.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: IT

Project size: Conducted interviews with 50 stakeholders ranging from business analysts to

project, program and portfolio managers.

RE Practice: Use of a prioritisation framework

RE Phase: Prioritisation

Software Process: N/A

287

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: Industry results

Lesson ID: LL035 12 [Kukreja et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: Factoring requirement dependencies in the prioritization to closely resemble imple-

mentation order is important.

Source: Industrial experience

Rationale: Without the ability of handling prerequisites the tool was deemed unusable by the

requirements engineers.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: IT

Project size: Deployed for use by an independent testing team (for value based test case prior-

itization), business analysts of various projects and an independent product development team

in the company.

RE Practice: Use of a prioritisation framework

RE Phase: Prioritisation

Software Process: N/A

Project Date: N/A

288

www.manaraa.com

Recording Date: N/A

Organisation Name: N/A

Repeatability: Industry results

Lesson ID: LL036 12 [Kukreja et al., 2012]

Journal: N/A

Conference: IEEE RE

Workshop: N/A

Year: 2012

Lesson: A need for hierarchical prioritisation since it fit the mental model of the product team.

Source: Industrial experience

Rationale: N/A

Impact: Analysts would perform top-down decomposition from goals, to modules, to re-

quirements where requirement priorities were influenced by the module it belonged to and

the goal(s) it helped satisfy.

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: IT

Project size: Deployed for use by an independent testing team (for value based test case prior-

itization), business analysts of various projects and an independent product development team

in the company.

RE Practice: Use of a prioritisation framework

RE Phase: Prioritisation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

289

www.manaraa.com

Organisation Name: N/A

Repeatability: Industry results

Lesson ID: LL037 12 [Gross et al., 2012]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2012

Lesson: ACT (UML Activity Diagrams) are more effective and efficient than EPC (Event-

driven Process Chains) from a requirements engineers viewpoint.

Source: Evaluating Experiment

Rationale: N/A

Impact: N/A

Target Object: Tool

Type: Neutral

Expression: Implicit

Application Domain: University

Project size:N/A

RE Practice: N/A

RE Phase: Analysis, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experimental results

Lesson ID: LL038 12 [Bjarnason et al., 2012]

290

www.manaraa.com

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2012

Lesson: The timeline (evidence-based timelines visualizing the project history) and its overview

enabled a discussion of the whole life cycle including RE decisions made through-out and sup-

ports the project retrospective meeting to a high degree.

Source: Questionnaire

Rationale: Project retrospectives may support project teams in reflecting on how requirements

are agreed upon and communicated throughout a project. However, time is rarely taken for

group reflection after project completion. Furthermore, project events may be recalled differ-

ently due to memory bias.

Impact: The evidence- based timelines may act as integrators at the meetings and thereby

create an environment productive to constructive reflection and sharing, similarly to the usage

of whiteboards and post-its. Timelines are beneficial in providing a common background that

motivates team members without previous information about the full development cycle into

deeper analysis, thereby supporting reflection and observations of patterns at the project level.

Target Object: Tool

Type: Negative

Expression: Implicit

Application Domain: N/A

Project size:Three feature projects that had developed new functionality and delivered soft-

ware to a release project within the past few months were selected for the evaluation. The

respondents represent all roles present at the retrospective meetings, i.e. product manager (re-

quirements responsible), project manager, line manager, architect, developer and tester.

RE Practice: N/A

RE Phase: Analysis

291

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: Confirming previous findings

Lesson ID: LL039 12 [Morales-Ramirez et al., 2012]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2012

Lesson: Interviews to stakeholders play a major role as a technique for the identification of

early requirement elements.

Source: Retrospective case study analysis

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Socio-technical system in the ambient assisted living domain (ACube

(Ambient Aware Assistance) project)

Project size: Project documentation consists of: the Carta dei Servizi document and transcrip-

tion of 8 interviews (Int.1-8); spreadsheets containing lists of early-requirements elements with

links to other documents; textual and visual descriptions of criticalities and scenarios; and GO

models (initial and final Tropos early requirement models). Besides this, two ACube analysts

(authors of this paper) are available to help understand projects material. 80 system require-

ments, of which 57 are functional.

292

www.manaraa.com

RE Practice: Interviews

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Social Residence

Repeatability: This confirms what is stated by Dieste et al., that interviewing is the most effec-

tive elicitation technique in collecting information about the domain.

Lesson ID: LL040 12 [Massacci et al., 2012]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2012

Lesson: The modeling supported by Massaci’s et al. approach can be a useful decision support

tool for decision makers during brainstorming and change assessment.

Source: Study within the research group, case study with master students, workshop with ATM

experts

Rationale: The evolution of mission-critical requirements at enterprise level is known to be

possible, but it is unknown whether it would happen: the known unknowns.

Impact: To capture what identified as the knowledge shared by multiple stakeholders about

“where the enterprise is currently, “where the enterprise wishes to be in the future, and “what

alternative designs are needed for the desired future state.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Air Traffic Management (ATM) domain

293

www.manaraa.com

Project size: N/A

RE Practice: Modeling

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Deep Blue Srl

Repeatability: Confirming previous findings

Lesson ID: LL041 12 [Hussain et al., 2012]

Journal: N/A

Conference: N/A

Workshop: EmpiRE

Year: 2012

Lesson: Use LASR for annotating requirements document.

Source: Evaluating Experiment

Rationale: Annotation of software requirements documents is performed by experts during

the requirements analysis phase to extract crucial knowledge from informally written textual

requirements. Different annotation tasks target the extraction of different types of information

and require the availability of experts specialized in the field. Large scale annotation tasks re-

quire multiple experts where the limited number of experts can make the tasks overwhelming

and very costly without proper tool support.

Impact: Help in attaining more accurate annotations,and helped eliminating the need of run-

ning adjudication sessions to resolve disagreement among the annotators, and, thus, reducing

the cost of large scale annotation.

Target Object: Tool

Type: Positive

294

www.manaraa.com

Expression: Implicit

Application Domain: Business, academic, web

Project size: Six requirements documents belonging to three different problem domains. They

were collected from both the industry and academia. We had two groups of annotators and one

expert (in requirements annotation) annotating the above documents. One group (G1) consist-

ing of four graduate students of the Master of Computer Science program who were trained to

annotate software requirements documents manually. The expert led the training of the anno-

tators, and also participated with them in the manual annotation experiment. The other group

(G2) consisted of 26 undergraduate students of software engineering.

RE Practice: Annotation

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: SAP Labs, Montreal, Canada, Concordia University

Repeatability: First time experimental results

Lesson ID: LL042 12 [Smialek et al., 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: Use Smialek’s et al. approach of using RSL to convert requirements from use cases to

working code.

Source: Evaluating Experiment

Rationale: Use cases are used in many methodologies to drive the software engineering pro-

cess. Though, their transition to code was usually a mostly manual process. In the context of

295

www.manaraa.com

MDD, use cases gain attention as first-class artifacts with representation notations allowing for

automatic transformations to analysis and design models.

Impact: Scenarios gain precise runtime semantics. They can be fully automatically translated

into dynamic executable code. The transformation can be easily changed to produce code in

any object-oriented language and any architectural framework. significant gains in productiv-

ity.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 28 post- graduate CS students attending a course on Model-Driven Software De-

velopment. they were formed into 8 groups consisting of 3-4 students each. All the groups

were assigned a ready use case model of a Campus Management System, containing 12 use

cases.

RE Practice: Modeling

RE Phase: Specification

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experimental results

Lesson ID: LL043 12 [Teka et al., 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

296

www.manaraa.com

Lesson: When using goal change management techniques, the Fuzzy logic based reasoning

provides concrete values for more detailed goal analysis and can handle aggregation of mul-

tiple contribution types while the TROPOS approach is suitable in providing high level goal

analysis and handling of goal conflicts.

Source: Evaluating case study

Rationale: Common Enterprise Architecture (EA) frameworks like The Open Group Archi-

tecture Framework (TOGAF) and EA modeling languages like Archimate lacks support for

analyzing goal and requirement change impacts in EA goal models.

Impact: To obtain a change impact analysis algorithm for managing evolving stakeholder goals

in Enterprise Architecture (EA) designs.

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: Drinking water production organization

Project size: Ninety goals identified from relevant documents and interviews.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: BiZZdesign B.V.

Repeatability: First time case study results

Lesson ID: LL044 12 [Torres et al., 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

297

www.manaraa.com

Year: 2012

Lesson: Use Torres’ et al. approach to mitigate to obsolescence of quality specification models

in service based systems.

Source: Evaluating case study

Rationale: Current approaches do not support updating of the specification to reflect changes

in the service market, like newly available services or improved QoS of existing ones. Thus,

even if the specification models reflect design-time acceptable requirements they may become

obsolete and miss opportunities for system improvement by self-adaptation.

Impact: Allow engineers to build SBS that can be protected against market-caused obsoles-

cence of their requirements specifications.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Service-based systems

Project size: A set of ten case studies, each one was composed of several software require-

ments, which them- selves were constrained by multiple quality requirements.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL045 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

298

www.manaraa.com

Workshop: MoDRE

Year: 2012

Lesson: Modeling did not help with non- functional requirements, they had to be treated sep-

arately, either as annotation (e.g. notes on diagrams), separate documentation or with mathe-

matical simulations.

Source: Industrial experience

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: Control systems and simulators for chemical and power plants

Project size: N/A

RE Practice: Modeling

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: 25 year retrospective

Lesson ID: LL046 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: SysML solves the problem of including non- functional requirements in an analysis

299

www.manaraa.com

model by incorporating requirements and constraints as first class modeling concepts.

Source: Industrial experience

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Explicit

Application Domain: Information technology (IT) consulting

Project size: N/A

RE Practice: Modeling

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: 25 year retrospective

Lesson ID: LL047 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: When eliciting requirements, it is impractical to switch between goal, product line,

threat and process modeling tools during elicitation. By having all the concepts available in a

single toolbar, it is possible to indicate hazards and mitigations early in the requirements cap-

ture process.

Source: Industrial experience

300

www.manaraa.com

Rationale: N/A

Impact: N/A

Target Object: Tool

Type: Negative

Expression: Explicit

Application Domain: N/A

Project size: Two projects

RE Practice: Modeling

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: 25 year retrospective

Lesson ID: LL048 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: Using symbols that represent their concepts improves communications with domain

experts and other non-technical stakeholders.

Source: Industrial experience

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Positive

301

www.manaraa.com

Expression: Explicit

Application Domain: N/A

Project size: Two projects

RE Practice: Modeling

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: 25 year retrospective

Lesson ID: LL049 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: A productivity improvement in requirements capture of from 30-60% with MDRE as

opposed to textual requirements capture.

Source: Industrial experience

Rationale: N/A

Impact: N/A

Target Object: Tool

Type: Positive

Expression: Explicit

Application Domain: N/A

Project size: N/A

RE Practice: Modeling

302

www.manaraa.com

RE Phase: Specification, documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: 25 year retrospective

Lesson ID: LL050 12 [Berenbach, 2012]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: When requirements are captured with models, for a variety of reasons it is necessary

to maintain them in hierarchical databases.

Source: Industrial experience

Rationale: Because of the impedance mismatch between model structure (directed graph) and

requirements database (tree structure).

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Explicit

Application Domain: N/A

Project size: N/A

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

303

www.manaraa.com

Recording Date: N/A

Organisation Name: N/A

Repeatability: 25 year retrospective

Lesson ID: LL051 12 [?]

Journal: N/A

Conference: N/A

Workshop: MoDRE

Year: 2012

Lesson: Use Mallet’s paper approach to improve specification quality through systemization

of specification structures based on architectural block diagrams, behavioural statecharts and

propositional logic structures.

Source: Evaluating case study

Rationale: In practice the elicitation and specification of requirements remained largely unaf-

fected by the introduction of model- based methods, while much effort has been spent on the

introduction of functional specifications. As a consequence, where functional specifications

exist, these are often created unsystematically and are of poor quality, leading to further prob-

lems during design, implementation and testing.

Impact: The resulting specifications provide connection points to sub-sequent model-based

analysis, design and testing activities, such as sequence enumeration, model-based testing or

model checking.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Car-manufacturer

Project size: 10 specification projects. Among the specified driver assistance systems are 4

parking systems, 2 break-assistance systems, and a camera- based traffic information system.

304

www.manaraa.com

RE Practice: Modeling

RE Phase: Elicitation, specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: Results from 3 years

Lesson ID: LL052 12 [Merten et al., 2012]

Journal: N/A

Conference: N/A

Workshop: REET

Year: 2012

Lesson: Use Merten’s et al. web-based software-based feedback agents (SBFA) system that

uses reasoning to assists the user.

Source: Evaluating Experiment

Rationale: The students have to use an issue tracking software in combination with a Require-

ments Engineering (RE) tool to document and plan their work. Though the course starts with

RE theory from elicitation via documentation and traceability, we found that the students find

it difficult to combine different RE artifact types and to develop useful traces between them.

Impact: Provide feedback and give pro-active advice inside an RE tool, while the specification

is created.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 8 students

305

www.manaraa.com

RE Practice: N/A

RE Phase: Elicitation, specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Bonn-Rhine-Sieg University

Repeatability: First time questionnaire results

Lesson ID: LL053 12 [Braun et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Natural Language before Performance Model does not impact the quality of regula-

tions or only very late in the regulatory process.

Source: Industrial experience

Rationale: The status quo is that performance modeling is not routinely included in the reg-

ulatory process, which may lead to lack of clarity, inconsistencies, and difficulties measuring

and hence assessing compliance.

Impact: There is no or little improvement in terms of inconsistencies in the regulations, the

understandability of the regulations, and the measurability of desired regulation outcomes. It

is likely that some measures will be difficult to quantify, leading to problems for effectively

enforcing the regulations.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Aviation Security

306

www.manaraa.com

Project size: Transport Canada is engaged in a multi-year modernization process to review and

renew its Aviation Security regulations

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time industrial experience

Lesson ID: LL054 12 [Braun et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Use Performance Model before Natural Language approach for drafting of regulations

as the performance model is translated into natural language.

Source: Industrial experience

Rationale: The status quo is that performance modeling is not routinely included in the reg-

ulatory process, which may lead to lack of clarity, inconsistencies, and difficulties measuring

and hence assessing compliance.

Impact: This approach is that it is inherently outcome-focused, as the structure of the perfor-

mance model makes the regulatory team (i) focus on the desired outcome long before regula-

tions are written, (ii) think of exceptions and conditions, and (iii) decide on what and how the

outcome should be measured with indicators. Indicators will be measurable, hence enabling

the regulator to effectively enforce regulations. The performance model gives a global, holis-

tic view of all regulations, improves understanding of the relationships of various regulations,

307

www.manaraa.com

and therefore makes it easier to evolve regulations whether they need to changed, retracted,

or added. The focus on the whole and not only on a single regulatory element alleviates the

barrier to removing regulations in fear of unintended consequence, because it is now possible

to demonstrate the effect of removing one regulation with the performance model. Models also

make it easier to document the evolution of regulations.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Aviation Security

Project size: Transport Canada is engaged in a multi-year modernization process to review and

renew its Aviation Security regulations

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time industrial experience

Lesson ID: LL055 12 [Braun et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Use the Natural Language and Performance Model at the Same Time approach for

drafting of regulations.

Source: Industrial experience

308

www.manaraa.com

Rationale: The status quo is that performance modeling is not routinely included in the reg-

ulatory process, which may lead to lack of clarity, inconsistencies, and difficulties measuring

and hence assessing compliance.

Impact: This iterative approach allows for continued verification that the modelers interpreta-

tion of the regulations is in line with the intent of the authors of the regulations. Furthermore, it

is possible to verify that the desired outcome is indeed measurable as indicators are explicitly

modeled. The performance model aids in drafting regulations and vice versa.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Aviation Security

Project size: Transport Canada is engaged in a multi-year modernization process to review and

renew its Aviation Security regulations

RE Practice: Modeling

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time industrial experience

Lesson ID: LL056 12 [Braun et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Use Performance Model Only approach for drafting of regulations.

309

www.manaraa.com

Source: Industrial experience

Rationale: The status quo is that performance modeling is not routinely included in the reg-

ulatory process, which may lead to lack of clarity, inconsistencies, and difficulties measuring

and hence assessing compliance.

Impact: There is no need to maintain two versions of the same regulations.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Aviation Security

Project size: Transport Canada is engaged in a multi-year modernization process to review and

renew its Aviation Security regulations

RE Practice: Modeling

RE Phase: N/A

Software Process: Iterative approach

Project Date: N/A

Recording Date: N/A

Organisation Name: Transport Canada

Repeatability: First time industrial experience

Lesson ID: LL057 12 [Sapkota et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Use the extended version of the Semantic-ART framework to extract essential mean-

ing from a regulatory text.

Source: Evaluating case study

310

www.manaraa.com

Rationale: Extraction of meaningful text from regulatory guidelines comes with many research

challenges such as dealing with different document-format, implicit document-structure, tex-

tual ambiguity and complexity

Impact: Extracting essential meaning from the regulatory text helps in the automation of the

Compliance Management (CM) process. The annotation generated by the tool was compared

with the manually created annotation of the same text, and the result was very close to the

manual annotation.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Pharmaceutical industry

Project size: 50 regulatory sentences were selected from the Eudralex-5

RE Practice: Annotation

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Eudralex

Repeatability: First time case study results

Lesson ID: LL058 12 [?]

Journal: N/A

Conference: N/A

Workshop: RELAW

Year: 2012

Lesson: Requirements engineers can benefit from applying (commitment, privilege, and right)

analysis (CPR) analysis rather than goal-based analysis or non-method-assisted analysis to pro-

311

www.manaraa.com

duce compliance requirements.

Source: Experiment

Rationale: In the United States, organizations can be held liable by the Federal Trade Commis-

sion for the statements they make in their privacy policies. Thus, organizations must include

their privacy policies as a source of requirements in order to build systems that are policy-

compliant.

Impact:The CPR subjects produced a higher median number of expected compliance require-

ments requirements derived from the policy by the experimenter (the first author) and two other

requirements engineers against which we compare the subject-produced requirements. The re-

quirements produced by the CPR subjects had better correctness and completeness with respect

to expected compliance requirements than the requirements produced by goal-based and con-

trol subjects.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: University

Project size: There were twelve subjects in the CPR condition group and eleven subjects in

the goal-based and control condition groups, respectively. The majority of the subjects (30 -

CPR: 11, GB: 10, control: 9) were computer science majors. Most subjects (24 - 8, 9, 7) were

pursuing Masters degree. The youngest subject was 19 years old, and the oldest subject was 49

years old. The median ages for the CPR, goal-based, and control subjects were 23, 23, and 22,

respectively. Most subjects (23 - 8, 6, 9) were male. It was a one-page portion of a legitimate

policy from a popular social networking site, Facebook. This portion of the policy discussed

the information that the organization receives, including: information about the user; content;

transactional information; site activity information; access device and browser information;

and cookie information.

RE Practice: N/A

312

www.manaraa.com

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: North Carolina State University (NCSU)

Repeatability: First time experimental results

Lesson ID: LL059 12 [Sharma and Biswas, 2012]

Journal: N/A

Conference: N/A

Workshop: RePa

Year: 2012

Lesson: Use the norm analysis patterns for automated requirements validation.

Source: Evaluating case study

Rationale: Requirements validation is an integral activity of Requirements Engineering. An

early detection of mismatch between the observable behaviour of the real-world and the in-

terpreted behaviour of the information system after requirements analysis is essential to the

success of the software developed.

Impact: Earlier transformation to norms improved the understanding of the requirements of

the information system.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Student registration, grading process, library

Project size: N/A

RE Practice: Patterns

RE Phase: Validation

313

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL060 12 [Sharma and Biswas, 2012]

Journal: N/A

Conference: N/A

Workshop: RePa

Year: 2012

Lesson: When the norms were subjected to reasoning and inferencing, it was found that both

these norms have similar consequent and different antecedent. Such a situation should be veri-

fied from stakeholders before moving onto the next stage of software design.

Source: Pilot study

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Library

Project size: Four subjects

RE Practice: Patterns

RE Phase: Validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

314

www.manaraa.com

Organisation Name: N/A

Repeatability: First time pilot study results

Lesson ID: LL061 12 [Sharma and Biswas, 2012]

Journal: N/A

Conference: N/A

Workshop: RePa

Year: 2012

Lesson: Norms themselves cannot always uncover underlying assumptions.

Source: Pilot study

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Library

Project size: Four subjects

RE Practice: Patterns

RE Phase: Validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time pilot study results

Lesson ID: LL062 12 [Behnam et al., 2012]

Journal: N/A

315

www.manaraa.com

Conference: N/A

Workshop: RePa

Year: 2012

Lesson: Use the Goal-oriented Pattern Family (GoPF) framework with ‘indicators’ to create a

pattern family.

Source: Case study

Rationale: As regulators start evolving regulations towards an outcome- based approach, it

becomes important to reuse knowledge about existing problems and solutions, and patterns are

known to be a means of increasing reusability.

Impact: The aviation screening pattern family captures knowledge about problems and solu-

tions at a given time. This helps regulatory parties by enabling the reuse of goal and business

process model building blocks on one hand and by shedding light on rationales of past deci-

sions on the other hand. stakeholders confirmed that patterns in such a family are valuable

vessels for reusing the knowledge for goal and business process modeling in other areas of

screening. it is also expected that the knowledge captured here can be potentially reused in

other similar domains such as aviation safety or non-aviation screening domains.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Aviation security regulatory compliance

Project size: Three different regulation units: passenger, carry-on baggage, and hold-baggage

screening.

RE Practice: Patterns

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

316

www.manaraa.com

Organisation Name: Transport Canada

Repeatability: First time case study results

Lesson ID: LL063 12 [Daramola et al., 2012]

Journal: N/A

Conference: N/A

Workshop: RePa

Year: 2012

Lesson: Use the ReqSec tool to aid RA in writing security requirements.

Source: Evaluating Experiment

Rationale: The task of specifying and managing security requirements (SR) is a challenging

one. Usually SR are often neglected or considered too late leading to poor design, and cost

overruns. Also, there is scarce expertise in managing SR, because most requirements engineer-

ing teams do not include security experts, which leads to prevalence of too vague or overly

specific SR.

Impact: High rating for perceived ease of use, and serendipity - generally demonstrates the

potential of the tool to first, simplify, and significantly aid the RA during the SRS process,

particularly when the RA is not highly experienced. Second, facilitate a reduction in the effort

expended on SRS, particularly as the process progresses by enabling reuse of most frequently-

used boilerplate patterns for new SR formulations. Third, ensure that quality SR are formu-

lated, in a consistent way, and without ambiguity.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: University

Project size: 7 subjects. Master degree students of software engineering

RE Practice: Patterns

317

www.manaraa.com

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Norwegian University of Science and Technology, Covenant University

Repeatability: First time experimental results

Lesson ID: LL064 12 [Penzenstadler and Eckhardt, 2012]

Journal: N/A

Conference: N/A

Workshop: RESS

Year: 2012

Lesson: Use a requirements engineering content model that serves as reference for require-

ments elicitation and documentation on the different levels of abstraction (SoS level as well as

single system level).

Source: Case study

Rationale: Requirements engineering for systems of systems faces extremely distributed re-

quirements engineering activities that involve a multitude of stakeholders, while the surround-

ing SoS is not necessarily in the focus of single system developers working on small units

within the SoS. This often results in isolated requirements engineering approaches which, in

turn, lead to requirements that can hardly be integrated with the other units of the SoS in order

to keep them consistent. Furthermore, problems arise with incomplete and/or redundant con-

tents, consistency, and traceability.

Impact: Instantiated in a concrete artefact model, contents are documented in a traceable way

while at the same time ensuring coverage of an agreed set of contents. The benefits are con-

sistency within the requirements and eased communication between the stakeholders. The

content model has led to common wording and efficient collaboration between the partners and

318

www.manaraa.com

across the domains, thereby showing first indicators of successfully approaching some of the

challenges of requirements engineering for systems of systems. The application of an artefact

model eases communication, improves consistency, and provides traceability of the contents.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Systems of Systems (SoS). ARAMiS (Automotive, Railway, and Avion-

ics in Multicore Systems). aims to create the technological basis to further improve security,

traffic-efficiency, and comfort in the mobility domains automotive, avionic, and railway by uti-

lizing multi-core technologies

Project size: The projects duration is 3 years, it has a total budget of 36,5 mio Euro. The

project is structured in 6 sub-projects: scenarios and requirements, continuous development

method, system design, hardware, software, and demonstrators. Results that are common to all

application domains are captured in the so-called Domain Common. Our research group has

the academic sub-project lead in “scenarios and requirements together with AUDI as industrial

lead.

RE Practice: N/A

RE Phase: Elicitation, Documentation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: German government

Repeatability: Confirming previous findings

Lesson ID: LL065 12 [Loft et al., 2012]

Journal: N/A

Conference: N/A

319

www.manaraa.com

Workshop: TwinPeaks

Year: 2012

Lesson: A number of iterations through requirements considerations, software architecture

considerations, and hardware considerations resulted in a more detailed specification of the

requirements, accommodated by extensive changes to the software architecture, and respecting

the given hardware constraints.

Source: Case study

Rationale: N/A

Impact: The original requirement was satisfied in full; it was an important requirement, and

the solution demanded a major rewrite of many lines of code.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Graphical user interface for a home control device.

Project size: The project team size varied between 5 and 10 developers, and the total time

consumption has been 18,000 hours. The hours are roughly distributed with 50% used for im-

plementation, and 50% used for other activities including analysis and design. 100,000 lines

of code have been written.

RE Practice: N/A

RE Phase: Elicitation

Software Process: Iterative, Scrum-like approach to development, with iterations of length

approximately 4-5 weeks

Project Date: N/A

Recording Date: N/A

Organisation Name: Mjlner Informatics A/S (Mjlner)

Repeatability: First time case study results

320

www.manaraa.com

Lesson ID: LL066 12 [Loft et al., 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: Making architectural choices early is risky.

Source: Case study

Rationale: N/A

Impact: Ended up causing both partially unsatisfied requirements and deviations from the ar-

chitecture.

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Graphical user interface for a home control device.

Project size: The project team size varied between 5 and 10 developers, and the total time

consumption has been 18,000 hours. The hours are roughly distributed with 50% used for im-

plementation, and 50% used for other activities including analysis and design. 100,000 lines

of code have been written.

RE Practice: N/A

RE Phase: N/A

Software Process: Iterative, Scrum-like approach to development, with iterations of length

approximately 4-5 weeks

Project Date: N/A

Recording Date: N/A

Organisation Name: Mjlner Informatics A/S (Mjlner)

Repeatability: First time case study results

321

www.manaraa.com

Lesson ID: LL067 12 [Wu et al., 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: It is important for the architect to negotiate requirements with the customer (maybe

directly, or indirectly through the project leader) and try to persuade the customer to accom-

modate current architecture design if the new requirement changes are customer-specific or too

large scaled.

Source: Case study

Rationale: The architect is the one that knows the most about the architecture, so she is the

one that should be responsible for the consistency of the PLA. She may be facing the customer

directly or convincing the product leader that the requirements are problematic with the archi-

tecture and not worthy fulfilled.

Impact: The requirements (denied directly or postponed temporarily) are highly possible to be

raised in the future. Therefore, it is necessary to keep track of denied and postponed require-

ment change requests, and probably the architect should get somehow prepared for architec-

tural changes.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Software product line (SPL) development. Wingsoft Examination Sys-

tem Product Line (WES-PL). Oral examination system for Shanghai Municipal Education and

Examination Authority (SMEEA)

Project size: 10 member products, 51 major versions that have been delivered to customer or

archived in the repository between December 2003 and May 2012.

RE Practice: N/A

322

www.manaraa.com

RE Phase: Negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Wingsoft Company

Repeatability: First time case study results

Lesson ID: LL068 12 [Wu et al., 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: For future marketing, it is useful to collect various customer needs and examine

whether combining different needs and variant components are meaningful.

Source: Case study

Rationale: There are two types of requirement elicitation in our case study: customer-oriented

and future-market-oriented. For a customer, the exact needs are vague and hard to be expressed

at the outset. This provides a space for architects and product leaders to build a concrete mental

projection of the system by showing existing product instances and current architecture.

Impact: It will help product leader to build a dominant role in future requirement elicitation

and also save effort negotiating requirements with future customers.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Software product line (SPL) development. Wingsoft Examination Sys-

tem Product Line (WES-PL). Oral examination system for Shanghai Municipal Education and

Examination Authority (SMEEA)

323

www.manaraa.com

Project size: 10 member products, 51 major versions that have been delivered to customer or

archived in the repository between December 2003 and May 2012.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Wingsoft Company

Repeatability: First time case study results

Lesson ID: LL069 12 [Petrov et al., 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: Use the forward and backward inferred macro-architectural requirements approach to

make inferred macro-architectural requirements explicit.

Source: Case study

Rationale: Traditionally the flow of authoritative information and control in requirements and

software engineering is from requirements to architecture, design, development, implementa-

tion and testing. Iterative, spiral and agile methods, among others, have introduced increments

and iterations in eliciting and discovering requirements within the project life cycle. Yet the

authoritative flow of information across organizational boundaries within the enterprise con-

tinues to be from requirements to architecture to design.

Impact: Version 3 of the product was built on an architecture that was both “fit for purpose

as well as “fit to context as defined by the macro- architecture and the forward-inferred and

backward-inferred macro-architectural requirements.

324

www.manaraa.com

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: N/A

Project size: One representative sample case study. This is one of about twenty representative

samples that we studied to date.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL070 12 [Savio and Suryanarayana, 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: It may be possible to accommodate changes to a FR by relaxing the QR by a minimal

extent such that it is not noticed, or noticed only to a very small degree by the end user.

Source: Case study

Rationale: An end-user not only expects to see new functionality delivered with every release,

he also wants the existing user- perceived quality to remain the same. The key criterion here is

user-perceived quality, which is operationally different from the actual QR of the system.

Impact: Using such an approach can often avoid major changes to the existing architecture.

Target Object: Technique/method

325

www.manaraa.com

Type: Positive

Expression: Implicit

Application Domain: Intelligent electronic device (IED) configuration application (henceforth

referred to as ConfigApp)

Project size: ConfigApp consists of various editors that allow a user to configure different

aspects of an IED before it is deployed in the field. To optimize on the costs and resources

required, ConfigApp builds upon the services provided by an existing engineering platform

(henceforth referred to as the Platform) that is developed and maintained by another depart-

ment at STS. The Platform provides a number of features that can be leveraged by ConfigApp,

including a set of GUI controls for building GUIs, XML-based modeling of domain-specific

data, persistent data storage, and logging and tracing mechanisms.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time case study results

Lesson ID: LL071 12 [Savio and Suryanarayana, 2012]

Journal: N/A

Conference: N/A

Workshop: TwinPeaks

Year: 2012

Lesson: Facilitating a dialogue between the PM and the SA. imperative that the stakeholders

who decide what the solution to the end-users problem is to be i.e., the Product Manager and

the System Architect communicate with each other through both formal and informal means.

326

www.manaraa.com

Source: Case study

Rationale: Software engineering is a not only a technical endeavor, but a social process in

which the dimensions of social interaction, communication, cooperation and co-ordination, are

as important as the technical aspects.

Impact: Enable the PM to be aware of the potential repercussions on architecture due to

changes in requirements, and that this awareness must be inculcated before changes to re-

quirements are accepted.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Intelligent electronic device (IED) configuration application (henceforth

referred to as ConfigApp)

Project size: ConfigApp consists of various editors that allow a user to configure different

aspects of an IED before it is deployed in the field. To optimize on the costs and resources

required, ConfigApp builds upon the services provided by an existing engineering platform

(henceforth referred to as the Platform) that is developed and maintained by another depart-

ment at STS. The Platform provides a number of features that can be leveraged by ConfigApp,

including a set of GUI controls for building GUIs, XML-based modeling of domain-specific

data, persistent data storage, and logging and tracing mechanisms.

RE Practice: N/A

RE Phase: Negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: First time case study results

327

www.manaraa.com

Lesson ID: LL072 12 [Wang et al., 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Use the simulation approach DepRVSim to predict the impact of requirement volatil-

ity on software project plans.

Source: Case study

Rationale: Requirement volatility is a common and inevitable project risk which has severe

consequences on software projects. When requirement change occurs, a project manager wants

to analyze its impact so as to better cope with it. As the modification to one requirement can

cause changes in its dependent requirements and its dependency relationship, the impact anal-

ysis can be very complex.

Impact: DepRVSim can predict correctly in the probability that simulation results have K man

hours offset from real effort deviation of around 45% and approximately 70%. Similar with

effort deviation information, the results in Table 9 show that for 5 and 10 hours offset from real

schedule deviation, DepRVSim can reach a correct rate of 49% and 70%.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Software project management tool: Qone

Project size: More than 600 thousand source lines of code, this product has been developed

and maintained for more than 7 years. More than 300 Chinese software organizations are using

this tool to manage their projects. There are 24 requirements (R1R̃24) generated through the

requirement phase in this release.It has 10 requirement changes.

RE Practice: N/A

RE Phase: Analysis

328

www.manaraa.com

Software Process: Iterative process

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL073 12 [Anh et al., 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Non-functional requirements are satisfactorily achieved by using OSS components.

Source: Survey

Rationale: There is considerable flexibility in requirements specifications (both functional and

non-functional), as well as in the features of available OSS components. This allows a collab-

orative matching and negotiation process between stakeholders such as: customers, software

contractors and OSS communities, regarding desired requirements versus available and thus

reusable OSS components.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Target is software-intensive organizations that adopt OSS in producing

software product. This population includes organizations with different sizes and in differ-

ent application domains. The application domain covers a wide variety of domains, including

Communication system, Information system, Web application and Public-sector support, with

a dominant of Public sector support in five cases.

329

www.manaraa.com

Project size: 64 companies from our contact list were selected and contacted by phone call

and email, in which fifteen stakeholders (developers or project leaders), who represented for

15 projects from Norway, Sweden and Spain, agreed to participate in the survey. The team size

ranges from two to 250 people

RE Practice: N/A

RE Phase: Analysis

Software Process: The project life cycles include ad hoc development, waterfall, iterative de-

velopment and agile, with a prevalence of the agile model in seven projects.

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First-time survey results

Lesson ID: LL074 12 [Anh et al., 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Customer involvement could enhance functional mismatch resolution while OSS com-

munity involvement could improve non-functional mismatch resolution.

Source: Survey

Rationale: There is considerable flexibility in requirements specifications (both functional and

non-functional), as well as in the features of available OSS components. This allows a collab-

orative matching and negotiation process between stakeholders such as: customers, software

contractors and OSS communities, regarding desired requirements versus available and thus

reusable OSS components.

Impact: Three collaborative resolving requirement mismatch involve customers, OSS com-

330

www.manaraa.com

munity and commercial vendor, alternatively. Keeping changes in components synchronized

with OSS community is beneficial for fixing and maintaining these components. In resolving

requirement mismatch, community involvement would not only reduce the developers effort in

maintaining the components but also bringing more confidence on component quality as “given

enough eyeballs, all bugs are shallow.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Target is software-intensive organizations that adopt OSS in producing

software product. This population includes organizations with different sizes and in differ-

ent application domains. The application domain covers a wide variety of domains, including

Communication system, Information system, Web application and Public-sector support, with

a dominant of Public sector support in five cases.

Project size: 64 companies from our contact list were selected and contacted by phone call

and email, in which fifteen stakeholders (developers or project leaders), who represented for

15 projects from Norway, Sweden and Spain, agreed to participate in the survey. The team size

ranges from two to 250 people

RE Practice: N/A

RE Phase: Analysis

Software Process: The project life cycles include ad hoc development, waterfall, iterative de-

velopment and agile, with a prevalence of the agile model in seven projects.

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First-time survey results

Lesson ID: LL075 12 [Engelsman and Wieringa, 2012]

331

www.manaraa.com

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Use the GORE language ’Light ARMOR’ for designing ER (enterprise-architecture)

C to trace back and forth between business goals and enterprise architecture components.

Source: Case study

Rationale: Ideally, all elements of an enterprise architecture can be traced to business goals ad

vice versa, but in practice, this is not the case.

Impact: Use for (1) estimating impact of change and (2) justifying the presence of an architec-

ture component.

Target Object: Tool

Type: Positive

Expression: Explicit

Application Domain: Drinking water production facility in the Netherlands

Project size: The company is responsible for the production and delivery of fresh drinking

water to 1.2 million people and transports 73 billion liters of drinking water each year. It has

about 500 employees divided over three divisions, viz. Production, Sales and Environment.

RE Practice: Tracing

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL076 12 [Poort et al., 2012]

332

www.manaraa.com

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: The application of verification is positively correlated with IT project success. More

specifically: IT projects that apply verification early in the development life cycle are signif-

icantly more successful than IT projects that apply verification late in the development life

cycle.

Source: Survey

Rationale: Not properly taking NFRs into account is considered to be among the most expen-

sive and difficult of errors to correct once an information system is completed and it is rated as

one of the ten biggest risks in requirements engineering. NFRs are widely seen as the driving

force for shaping IT systems architectures.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: IT services

Project size: The invitation to participate in the survey was sent out by e-mail to around 350

members of the Netherlands (NL) Architecture Community of Practice (ACoP) of the ABC

company. The ACoP consists of experienced professionals practicing architecture at various

levels (business, enterprise, IT, software, and systems architecture) in project or consultancy

assignments. The survey was closed after 16 days. By that time, 133 responses were collected.

After elimination of duplicates (1), incomplete responses (51) and responses from respondents

that indicated they had not fulfilled the role of architect on their latest project (41), 39 responses

remained.

RE Practice: Prototyping, simulation, analysis, testing

333

www.manaraa.com

RE Phase: Verification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First-time survey results

Lesson ID: LL077 12 [Fricker and Schumacher, 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Use variability modeling that allows abstracting from requirements with AND, OR,

and REQUIRES relationships to structure the release planning inputs.

Source: Case study

Rationale: Requirements catalogues for software release planning are often not complete and

homogeneous. Current release planning approaches, however, assume such commitment to

detail at least implicitly.

Impact: The feature tree, in comparison with a flat backlog of requirements, reduced com-

plexity of release planning. The abstraction from requirements to features reduced the total

number of elements to be considered by a factor 10.3. The feature tree and the roadmap were

the key instruments used for deciding what to implement and when to implement. The feature

tree provided a basis to discuss the scope of pilot projects with the stakeholders identified in

the stakeholder tree. Stakeholder needs that could not directly be addressed led to discovering

new potential features. In comparison to a flat list of requirements, the feature tree allowed

building a mental model of the solution. The reduced number of features allowed building a

shared vocabulary with stakeholders, the color coding visualizing growth of the solution, and

334

www.manaraa.com

AND-OR feature dependencies understanding design options. This focused discussions and

communication with stakeholders on aspects that were essential for planning. Decisions could

be taken together with these stakeholders, which led to trust in the plans and in the product

organization.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Software as a service for managing media such as text, sound, pictures,

and movies

Project size: Responsible for the development was a product manager, a project manager, and

a team of up to five developers. The requirements catalogue was managed in a word proces-

sor document and used as a basis for release planning. It contained 108 requirements. The

requirements were grouped into 12 sections and 19 subsections or themes. In average, a group

contained 3.6 requirements and was allocated to 1.93 releases.

RE Practice: Modeling, using feature trees

RE Phase: Analysis

Software Process: Agile

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability:First time case study results

Lesson ID: LL078 12 [Raspotnig and Opdahl, 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

335

www.manaraa.com

Lesson: Combine FMEA with Failure Sequence Diagrams (FSD), a specialized version of

Misuse Sequence Diagrams (MUSD).

Source: Case study

Rationale: In air traffic management (ATM) safety assessments are performed with traditional

techniques such as failure mode and effect analysis (FMEA). As system modelling is becom-

ing an increasingly important part of developing ATM systems, techniques that integrate safety

aspects and modelling are needed.

Impact: FSD increased the understanding among the participants of how the system worked.

FMEA should be used to give the structure of the analysis. more time was spent, but that they

felt more sure about the analysis being thorough.participants were able to use FSD with little

prior training. FSD is not able to cover all weaknesses of FMEA, especially not the assessment

of multiple failures. FSD addresses components and their interactions in particular, which we

conclude is an improvement of the FMEA technique and the overall safety assessment.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Air traffic management

Project size: FMEA team was established, with a facilitator, a secretary, three systems engi-

neers and an air traffic control officer. Several of the participants were familiar with UML, but

only one of them had previous experience with sequence diagrams. all participants received

a document describing the FMTP system and the overall system, relevant safety documenta-

tion and a procedure for conducting the FMEA. The latter consisted of a worksheet with the

columns component number, component, failure mode, causal factor, immediate effect, system

effect, current controls and recommended action. Furthermore, it included a list of typical fail-

ure modes for components and software

RE Practice: Modeling

RE Phase: Analysis

336

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Air Navigation Service Provider

Repeatability:First time case study results

Lesson ID: LL079 12 [Knauss and Schneider, 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Use the model based on heuristic critiques to encode new experiences and check re-

quirements documentation.

Source: Case study

Rationale: Despite significant advances in requirements engineering (RE) research and prac-

tice, software developing organisations still struggle to create requirements documentation in

sufficient quality and in a repeatable way. The notion of good-enough quality is domain and

project specific. Software developing organisations need concepts that i) allow adopting a suit-

able set of RE methods for their domain and projects and ii) allow improving these methods

continuously.

Impact: 89% correct answers: 100% of the changes at existing heuristic rules were correct and

86% of the newly created heuristic rules. Small changes lasted less than 2 minutes. A new

heuristic rule could be created in less than 7 minutes.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: University

337

www.manaraa.com

Project size: Seven volunteers., two of them still in their Bachelors (3rd and 5th year / regular:

3 years)

RE Practice: Use of automatic checks

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL080 12 [Lauesen, 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Use task description for user interface requirements.

Source: Industrial experience

Rationale: Although use cases are supposed to explain the context, they rarely do in practice.

Some of the user-story aspects are missing. When would the user do this? And what will

he do afterwards? Notice that a system that just reports Registration rejected fully meets the

requirement expressed by the use case.

Impact: Task descriptions are an alternative that combines the best parts of user stories and use

cases.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Electronic Land Registry system

338

www.manaraa.com

Project size: Based on historical data, it was estimated that 5 million registrations would be

handled per year, corresponding to about 2 per second during peak load in daytime. (Denmark

has around 5 million inhabitants).

RE Practice: Use of task description

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danish government

Repeatability: Industry results

Lesson ID: LL081 12 [Lauesen, 2012]

Journal: N/A

Conference: REFSQ

Workshop: N/A

Year: 2012

Lesson: Do not restrict the definition of the user interface to the domain expert (a land regis-

tration judge) and the supplier’s designer without any usability testing.

Source: Industrial experience

Rationale: Usability experts know that a user interface designed in this way is only under-

standable to a domain expert. And this turned out to be the case also in this project. The

lawyers and real-estate agents didn’t understand.

Impact: Lead to an interface that is only understood by the domain expert and not the average

user.

Target Object: Technique/method

Type: Negative

Expression: Implicit

339

www.manaraa.com

Application Domain: Electronic Land Registry system

Project size: Based on historical data, it was estimated that 5 million registrations would be

handled per year, corresponding to about 2 per second during peak load in daytime. (Denmark

has around 5 million inhabitants).

RE Practice: N/A

RE Phase: Elicitation, specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Danish government

Repeatability: Industry results

Lesson ID: LL082 12 [Zhu and Herrmann, 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: Use the meta-design approach for eliciting requirements from stakeholders.

Source: Case study

Rationale:Future uses and problems cannot be completely anticipated at the software design

time, thus requiring software environments that can be evolved at use time. The co-evolution

of systems and users social practices challenges requirements engineering (RE). Since it is

unrealistic to come up with fully described requirements for yet unknown problems and a con-

tinuously changing context, it is necessary to extend the RE-process in use time, providing

possibilities to accommodate emergent new requirements.

Impact: A meta-design approach not only enables requirements engineering at use time but

also enhances different levels of creativity: 1) opportunistic programming as bricologe at the

340

www.manaraa.com

meta-design level, in that meta-designers constantly evolved the MikiWiki design environ-

ment opportunistically to cope with emergent socio-technical issues without needing to change

server-side code; and 2) creativity-in-use at the design and use level, in that designers and users

invent their own ways to use MikiWiki which are not envisioned by meta-designers. In addi-

tion, a more visual-based approach is appropriate to involve different design communities and

enhance creativity.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Mobile version of a micro-survey tool, the Creativity Barometer. The

purpose of the Creativity Barometer is to conduct surveys to continuously understand and as-

sess the climate of a companys creativity support. The Creativity Barometer allows companies

to periodically repeat surveys and get instant feedback continuously. After a pre-specified time

period (e.g. eight months), the company can summarize the feedback and plan interventions to

improve the creativity climate.

Project size: The design sessions involved 11 participants - four female and seven male, aged

from 25 to 55 years, and comprising MA, MSc and PhD students as well as associate profes-

sors. 5 design sessions, which were organized to involve different types of participants. Group

1 and 2 consisted of two designers; group 3 consisted of two users and two designers from

the previous design session; group 4 was made purely of two users; group 5 consisted of one

designer and two users.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Information and Technology Management Group at the Ruhr-University

341

www.manaraa.com

Repeatability: First time case study results

Lesson ID: LL083 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: Use the ’Pictionade’ game to communicate requirements among stakeholders.

Source: Case study

Rationale: The various issues involved in communicating requirements across multiple stake-

holders and stakeholder groups have been well documented in literature and in experience

reports. Despite this, however, most stakeholders involved in a project seem largely unaware

of what the potential consequences of these issues can be. The manner in which stakeholders

communicate requirements to each other affects the subsequent requirements management ac-

tivities, and has a direct impact on the final form and scope of the stated requirement.

Impact: We were able to determine that there were several categories of end users for the sys-

tem, and were encouraged to think from each of the groups perspectives, and visualize their

notion of the look and feel of the system. Since text based representations were kept to a mini-

mum, discussion times were cut down considerably we were able to come to a quick consensus

and visual clarity was provided on most of the interfaces. Due to this, we were able to elicit and

communicate several requirements for the user interface of the software system which we may

have otherwise overlooked. We were also able to determine use case scenarios, and develop a

context diagram with actors and end users from the pictures.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Management of an industrial automation plant

342

www.manaraa.com

Project size: N/A

RE Practice: Communication

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL084 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: The overall system or product and its purpose must be described as clearly as possible

before communicating its features.

Source: Case study

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: An online book shopping portal and a smart phone

Project size: 9 PMs, having several years of experience on a wide range of industry projects.

We divided them into two teams - team ‘A, comprising three PMs, and team ‘B with six PMs.

Each person in both teams assumed one of three roles the artist, the actor or the interpreter.

A few high level requirements for two products were given only to the artists from each team.

343

www.manaraa.com

a few high level requirements from the end users perspective, for two example products - an

online book shopping portal and a smart phone.

RE Practice: Applying ‘Pictionades’

RE Phase: Elicitation, specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: N/A

Lesson ID: LL085 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: Several rounds of communication may be required to obtain clarity on a single point.

Source: Case study

Rationale: This point was demonstrated when we observed the participants trying to refine

their articulation of the information that they wanted to communicate, and provide more intel-

ligibility on expression techniques, when it was observed that the recipient of the information

hadnt fully grasped the information.

Impact: N/A

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: An online book shopping portal and a smart phone

Project size: 9 PMs, having several years of experience on a wide range of industry projects.

344

www.manaraa.com

We divided them into two teams - team ‘A, comprising three PMs, and team ‘B with six PMs.

Each person in both teams assumed one of three roles the artist, the actor or the interpreter.

A few high level requirements for two products were given only to the artists from each team.

a few high level requirements from the end users perspective, for two example products - an

online book shopping portal and a smart phone.

RE Practice: Applying ‘Pictionades’, Communication

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: N/A

Lesson ID: LL086 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: Establishing well understood terminology that can be understood irrespective of stake-

holders backgrounds.

Source: Case study

Rationale: This point was observed when we saw the participants instinctively making use of

hand signals such as a raised palm for stop and start over, a quick shake of the hand/head for no,

incorrect, a thumbs up sign for right and so on, when they realized that the other participants

easily understood these gestures.

Impact: An effective means in which communication can be made more effective.

Target Object: Technique/method

345

www.manaraa.com

Type: Neutral

Expression: Explicit

Application Domain: An online book shopping portal and a smart phone

Project size: 9 PMs, having several years of experience on a wide range of industry projects.

We divided them into two teams - team ‘A, comprising three PMs, and team ‘B with six PMs.

Each person in both teams assumed one of three roles the artist, the actor or the interpreter.

A few high level requirements for two products were given only to the artists from each team.

a few high level requirements from the end users perspective, for two example products - an

online book shopping portal and a smart phone.

RE Practice: Applying ‘Pictionades’, Communication

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: N/A

Lesson ID: LL087 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: It is important to communicate what the system is not supposed to do, in addition to

what features and functions it must exhibit.

Source: Case study

Rationale: N/A

Impact: This would help in the formulation of both positive and negative use-case scenarios

346

www.manaraa.com

of the system. This learning is indirectly helpful for stakeholders in determining what compo-

nents should go into the system, interface, environment and domain.

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: An online book shopping portal and a smart phone

Project size: 9 PMs, having several years of experience on a wide range of industry projects.

We divided them into two teams - team ‘A, comprising three PMs, and team ‘B with six PMs.

Each person in both teams assumed one of three roles the artist, the actor or the interpreter.

A few high level requirements for two products were given only to the artists from each team.

a few high level requirements from the end users perspective, for two example products - an

online book shopping portal and a smart phone.

RE Practice: Applying ‘Pictionades’, Communication

RE Phase: N/A

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: N/A

Lesson ID: LL088 12 [Savio and P.C., 2012]

Journal: N/A

Conference: N/A

Workshop: Workshop on Creativity in Requirements Engineering

Year: 2012

Lesson: The importance of continuous validation and feedback on communicated items as and

when possible cannot be underestimated.

347

www.manaraa.com

Source: Case study

Rationale: N/A

Impact: N/A

Target Object: Technique/method

Type: Neutral

Expression: Explicit

Application Domain: An online book shopping portal and a smart phone

Project size: 9 PMs, having several years of experience on a wide range of industry projects.

We divided them into two teams - team ‘A, comprising three PMs, and team ‘B with six PMs.

Each person in both teams assumed one of three roles the artist, the actor or the interpreter.

A few high level requirements for two products were given only to the artists from each team.

a few high level requirements from the end users perspective, for two example products - an

online book shopping portal and a smart phone.

RE Practice: Applying ‘Pictionades’

RE Phase: Validation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Siemens

Repeatability: N/A

Lesson ID: LL089 12 [Calefato et al., 2012]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Requirements elicitation is the task where computer-mediated communication tools

348

www.manaraa.com

have most opportunity for successful application.

Source: Controlled experiment

Rationale: Effective communication is crucial to system design. Especially at the requirements

stage, system design is a social and communication-intensive activity that relies on an effec-

tive collaboration of stakeholders with diverse professional and cultural backgrounds. Whether

engineered or naturally emerging and agreed upon during a negotiation process, requirements

demand increased communication during elicitation and negotiation. Effective communication

is vital during these activities to overcome the semantic gap between users and designers, as

well as to reconcile the aspects of the design process affected by human and organizational fac-

tors. Computer-mediation has the potential to overcome problems of group dynamics in large

groups; as well, software teams increasingly develop software in predominantly distributed

settings and rely on computer- mediated collaborative tools to mediate their design activities.

Geographical, organizational, and cultural distance brings additional challenges to effective

communication and results in misunderstandings, the loss of opportunities for rich interaction,

and a reduction in frequency of both formal and informal communication.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: UVic Centre for Scholastic Entertainment Edu Game, Equipment and

Patient Tracking for St. Peter Hospital, Bus Tracking System, consulting Groupwork System,

University of Vancouver Island Room Organization System, SysCal Shared Calendar

Project size: The course involved thirty-eight students working in six project teams in the

development of six realistic software projects. each group composed of five to eight randomly-

selected student. outcome was a requirements specification (RS)

RE Practice: Use of text-based synchronous communication

RE Phase: Elicitation

349

www.manaraa.com

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Victoria

Repeatability: These results confirm the predictions of socio-psychological theories that the

depersonalization effect induced by the use of less-rich and less-social media limits domina-

tion, group/social pressure, and other dysfunctional aspects intrinsic to F2F group communi-

cation and that are specific to requirements group approaches.

Lesson ID: LL090 12 [Calefato et al., 2012]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use text-based communication rather than F2F communication to discuss conflicting

issues.

Source: Controlled experiment

Rationale: Effective communication is crucial to system design. Especially at the requirements

stage, system design is a social and communication-intensive activity that relies on an effec-

tive collaboration of stakeholders with diverse professional and cultural backgrounds. Whether

engineered or naturally emerging and agreed upon during a negotiation process, requirements

demand increased communication during elicitation and negotiation. Effective communication

is vital during these activities to overcome the semantic gap between users and designers, as

well as to reconcile the aspects of the design process affected by human and organizational fac-

tors. Computer-mediation has the potential to overcome problems of group dynamics in large

groups; as well, software teams increasingly develop software in predominantly distributed

settings and rely on computer- mediated collaborative tools to mediate their design activities.

350

www.manaraa.com

Geographical, organizational, and cultural distance brings additional challenges to effective

communication and results in misunderstandings, the loss of opportunities for rich interaction,

and a reduction in frequency of both formal and informal communication.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: UVic Centre for Scholastic Entertainment Edu Game, Equipment and

Patient Tracking for St. Peter Hospital, Bus Tracking System, consulting Groupwork System,

University of Vancouver Island Room Organization System, SysCal Shared Calendar

Project size: The course involved thirty-eight students working in six project teams in the

development of six realistic software projects. each group composed of five to eight randomly-

selected student. outcome was a requirements specification (RS)

RE Practice: Use of text-based synchronous communication

RE Phase: Elicitation, negotiation, communication

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Victoria

Repeatability: These results confirm the predictions of socio-psychological theories that the

depersonalization effect induced by the use of less-rich and less-social media limits domina-

tion, group/social pressure, and other dysfunctional aspects intrinsic to F2F group communi-

cation and that are specific to requirements group approaches.

Lesson ID: LL091 12 [Calefato et al., 2012]

Journal: EMSE

Conference: N/A

351

www.manaraa.com

Workshop: N/A

Year: 2012

Lesson: Use a F2F medium to familiarize with others, and to express complex ideas and to

understand others opinions.

Source: Controlled experiment

Rationale: Effective communication is crucial to system design. Especially at the requirements

stage, system design is a social and communication-intensive activity that relies on an effec-

tive collaboration of stakeholders with diverse professional and cultural backgrounds. Whether

engineered or naturally emerging and agreed upon during a negotiation process, requirements

demand increased communication during elicitation and negotiation. Effective communication

is vital during these activities to overcome the semantic gap between users and designers, as

well as to reconcile the aspects of the design process affected by human and organizational fac-

tors. Computer-mediation has the potential to overcome problems of group dynamics in large

groups; as well, software teams increasingly develop software in predominantly distributed

settings and rely on computer- mediated collaborative tools to mediate their design activities.

Geographical, organizational, and cultural distance brings additional challenges to effective

communication and results in misunderstandings, the loss of opportunities for rich interaction,

and a reduction in frequency of both formal and informal communication.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: UVic Centre for Scholastic Entertainment Edu Game, Equipment and

Patient Tracking for St. Peter Hospital, Bus Tracking System, consulting Groupwork System,

University of Vancouver Island Room Organization System, SysCal Shared Calendar

Project size: The course involved thirty-eight students working in six project teams in the

development of six realistic software projects. each group composed of five to eight randomly-

352

www.manaraa.com

selected student. outcome was a requirements specification (RS)

RE Practice: Use of text-based synchronous communication

RE Phase: Elicitation, negotiation, communication

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Victoria

Repeatability: These results confirm the predictions of socio-psychological theories that the

depersonalization effect induced by the use of less-rich and less-social media limits domina-

tion, group/social pressure, and other dysfunctional aspects intrinsic to F2F group communi-

cation and that are specific to requirements group approaches.

Lesson ID: LL092 12 [Calefato et al., 2012]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use TXT for having better task facilitation specifically in structured discussion, proper

documentation, and visibility of decisions made.

Source: Controlled experiment

Rationale: Effective communication is crucial to system design. Especially at the requirements

stage, system design is a social and communication-intensive activity that relies on an effec-

tive collaboration of stakeholders with diverse professional and cultural backgrounds. Whether

engineered or naturally emerging and agreed upon during a negotiation process, requirements

demand increased communication during elicitation and negotiation. Effective communication

is vital during these activities to overcome the semantic gap between users and designers, as

well as to reconcile the aspects of the design process affected by human and organizational fac-

353

www.manaraa.com

tors. Computer-mediation has the potential to overcome problems of group dynamics in large

groups; as well, software teams increasingly develop software in predominantly distributed

settings and rely on computer- mediated collaborative tools to mediate their design activities.

Geographical, organizational, and cultural distance brings additional challenges to effective

communication and results in misunderstandings, the loss of opportunities for rich interaction,

and a reduction in frequency of both formal and informal communication.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: UVic Centre for Scholastic Entertainment Edu Game, Equipment and

Patient Tracking for St. Peter Hospital, Bus Tracking System, consulting Groupwork System,

University of Vancouver Island Room Organization System, SysCal Shared Calendar

Project size: The course involved thirty-eight students working in six project teams in the

development of six realistic software projects. each group composed of five to eight randomly-

selected student. outcome was a requirements specification (RS)

RE Practice: Use of text-based synchronous communication

RE Phase: Elicitation, negotiation, communication

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Victoria

Repeatability: These results complement findings from previous GSS- related research that

groups interacting on text-based channels often outperform collocated groups in tasks of idea

generation because of the ability to input ideas in parallel.

Lesson ID: LL093 12 [Calefato et al., 2012]

354

www.manaraa.com

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Lean media offer less support to achieving common ground during requirements ne-

gotiations than during elicitations.

Source: Controlled experiment

Rationale: Effective communication is crucial to system design. Especially at the requirements

stage, system design is a social and communication-intensive activity that relies on an effec-

tive collaboration of stakeholders with diverse professional and cultural backgrounds. Whether

engineered or naturally emerging and agreed upon during a negotiation process, requirements

demand increased communication during elicitation and negotiation. Effective communication

is vital during these activities to overcome the semantic gap between users and designers, as

well as to reconcile the aspects of the design process affected by human and organizational fac-

tors. Computer-mediation has the potential to overcome problems of group dynamics in large

groups; as well, software teams increasingly develop software in predominantly distributed

settings and rely on computer- mediated collaborative tools to mediate their design activities.

Geographical, organizational, and cultural distance brings additional challenges to effective

communication and results in misunderstandings, the loss of opportunities for rich interaction,

and a reduction in frequency of both formal and informal communication.

Impact: N/A

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: UVic Centre for Scholastic Entertainment Edu Game, Equipment and

Patient Tracking for St. Peter Hospital, Bus Tracking System, consulting Groupwork System,

University of Vancouver Island Room Organization System, SysCal Shared Calendar

355

www.manaraa.com

Project size: The course involved thirty-eight students working in six project teams in the

development of six realistic software projects. each group composed of five to eight randomly-

selected student. outcome was a requirements specification (RS)

RE Practice: Use of text-based synchronous communication

RE Phase: Elicitation, negotiation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: University of Victoria

Repeatability: add to the previous findings that TXT negotiations represent a poor task/technology

fit.

Lesson ID: LL094 12 [Wnuk et al., 2012]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: The linguistic method is not more efficient in consolidating requirements than the

searching and filtering method.

Source: Controlled experiment

Rationale: Large market-driven software companies continuously receive large numbers of

requirements and change requests from multiple sources. The task of analyzing those requests

against each other and against already analyzed or implemented functionality then recording

similarities between them, also called the requirements consolidation task, may be challenging

and time consuming.

Impact: N/A

Target Object: Technique/method, tool

356

www.manaraa.com

Type: Negative

Expression: Implicit

Application Domain: Requirements specifications were produced as a part of a course “Soft-

ware Development of Large Systems

Project size: 45 subjects, working in pairs on the same set of requirements as in the original

study. Two requirements sets containing 30 and 160 requirements respectively, were imported

to ReqSimlieA and Telelogic Doors

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Lund University

Repeatability: Contradicts the findings of the original study

Lesson ID: LL095 12 [Wnuk et al., 2012]

Journal: EMSE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Assisted method (lexical similarity) can deliver more correct links and miss fewer

links than the manual method (searching and filtering).

Source: Controlled experiment

Rationale: Large market-driven software companies continuously receive large numbers of

requirements and change requests from multiple sources. The task of analyzing those requests

against each other and against already analyzed or implemented functionality then recording

similarities between them, also called the requirements consolidation task, may be challenging

357

www.manaraa.com

and time consuming.

Impact: N/A

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: Requirements specifications were produced as a part of a course “Soft-

ware Development of Large Systems

Project size: 45 subjects, working in pairs on the same set of requirements as in the original

study. Two requirements sets containing 30 and 160 requirements respectively, were imported

to ReqSimlieA and Telelogic Doors

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Lund University

Repeatability: Confirms the previous results

Lesson ID: LL096 12 [Alrajeh et al., 2012]

Journal: N/A

Conference: ICSE

Workshop: N/A

Year: 2012

Lesson: Use Alrajeh’s tool-supported technique for generating a set of obstacle conditions

guaranteed to be complete and consistent with respect to the known domain properties.

Source: Case study

Rationale: Missing requirements are known to be among the major causes of software failure.

358

www.manaraa.com

They often result from a natural inclination to conceive over-ideal systems where the software-

to-be and its environment always behave as expected. Obstacle analysis is a goal-anchored

form of risk analysis whereby exceptional conditions that may obstruct system goals are iden-

tified, assessed and resolved to produce complete requirements. Various techniques have been

proposed for identifying obstacle conditions systematically. Among these, the formal ones

have limited applicability or are costly to automate.

Impact: Improvement over existing methods through automation and detection of a wider

class of obstacles. provides support for eliciting new domain properties. produced finer sub-

obstacles depending on the granularity of the provided domain properties.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: Safety-critical system

Project size: Medium-sized

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: London Ambulance Service

Repeatability: First time case study results

Lesson ID: LL097 12 [Post et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

359

www.manaraa.com

Lesson: Behavioral requirements can be specified via the specification pattern system (SPS)

and 3 further patterns by Post et al.

Source: Case study

Rationale: To allow an automatic formal analysis of requirements, the requirements have to

be formalized first. However, logical formalisms are seldom accessible to stakeholders in the

automotive context. Konrad and Cheng proposed a specification pattern system (SPS) repre-

sented in a restricted English grammar that can be automatically translated to logics, but looks

like natural language.

Impact: N/A

Target Object: Technique/method

Type: Neutral

Expression: Implicit

Application Domain: Automotive

Project size: Five requirements documents. 289 informal behavioral requirements taken from

automotive BOSCH projects.

RE Practice: Use of specification pattern system (SPS)

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: BOSCH

Repeatability: First time case study results

Lesson ID: LL098 12 [Schneider et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

360

www.manaraa.com

Year: 2012

Lesson: Use Schneider’s et al. tool/approach to support reuse of existing experiences that are

relevant for security while eliciting and analyzing security requirements.

Source: Case study

Rationale: More and more software projects today are security-related in one way or the other.

Requirements engineers without expertise in security are at risk of over- looking security re-

quirements, which often leads to security vulnerabilities that can later be exploited in practice.

Identifying security-relevant requirements is labor-intensive and error-prone.

Impact: Very good results in cases where the classifier is applied to the requirements from the

same source as it was trained with. We obtained poor results in cases where the classifier was

applied to a different requirements specification than the one it was trained with. we enable

people to exchange experiences about security-relevant requirements while they write and dis-

cuss project requirements. At the same time, the approach enables participating stakeholders to

learn while they write requirements. This can increase security awareness and facilitate learn-

ing on both individual and organizational levels. support reuse of existing experiences that are

relevant for security.

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: Telecommunication

Project size: N/A

RE Practice: N/A

RE Phase: Elicitation, analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: European Telecommunications Standards Institute

361

www.manaraa.com

Repeatability: First time case study results

Lesson ID: LL099 12 [Lauesen and Kuhail, 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use task description rather than use cases for specifying the requirements that deal

with the interaction between a human user and the system.

Source: Case study

Rationale: N/A

Impact: With use cases, the customers present problems disappear unless the analyst can see

a solution to the problem. The consequence is that when the customer looks for a new system,

he will not take into account how well the new system deals with the problems. Even if the

analyst has specified a solution, a better solution may not get the merit it deserves because the

corresponding problem is not visible in the use cases. Task descriptions avoid this by allowing

the analyst to state a problem as one of the steps, with the implicit requirement that a solution

is wanted (a problem requirement). use cases in practice produce too restrictive requirements.

Task descriptions do not specify a dialog but only what user and system need to do together.

Tasks are also a good basis for designing the user interface because the developer can focus on

designing screens that conveniently show the data needed during the task. He can add func-

tionality and the dialog later. Use cases had the advantage of spreading with OOA/OOD and

powerful consultants. Using tasks instead requires a lot of change in present practice and tools.

Target Object: Technique/method

Type: Positive, negative

Expression: Implicit

Application Domain: Hotline (help desk)

362

www.manaraa.com

Project size: 15 replies, eight used traditional use cases that specified a dialog between user

and system. Seven used a related technique, task description, which specified the customers

needs without specifying a dialog.

RE Practice: Use of use cases and task descriptions

RE Phase: Specification

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL100 12 [Maxwell et al., 2012b]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use Maxwell’s et al. taxonomy to identify conflicting compliance requirements due

to cross-references in legal texts.

Source: Multi Case study

Rationale: Companies must ensure their software complies with relevant laws and regulations

to avoid the risk of costly penalties, lost reputation, and brand damage result- ing from non-

compliance. Laws and regulations contain internal cross-references to portions of the same

legal text, as well as cross-references to external legal texts. These cross-references introduce

ambiguities, exceptions, as well as other challenges to regulatory compliance. Requirements

engineers need guidance as to how to address cross- references in order to comply with the

requirements of the law.

Impact: Aid requirements engineers in identifying compliance requirements that appear to

363

www.manaraa.com

conflict so that these conflicts may subsequently be resolved. 5 conflicts were identified.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Health care, finance

Project size: 177 total cross-references within the HIPAA Privacy Rule. 360 total cross-

references within the GLB Act. a total of 367 cross- references within the GLBA Financial

Privacy Rule

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: U.S. Health Insurance Portability and Accountability Act (HI- PAA) Pri-

vacy Rule, the GrammLeachBliley Act (GLBA), and the GLBA Financial Privacy Rule

Repeatability: First time case study results

Lesson ID: LL101 12 [Maxwell et al., 2012b]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: When a compliance requirement expressed in one legal text is more restrictive than the

corresponding compliance requirement expressed in another legal text, requirements engineers

should choose to follow the more restrictive of the two.

Source: Multi Case study

Rationale: Companies must ensure their software complies with relevant laws and regulations

364

www.manaraa.com

to avoid the risk of costly penalties, lost reputation, and brand damage result- ing from non-

compliance. Laws and regulations contain internal cross-references to portions of the same

legal text, as well as cross-references to external legal texts. These cross-references introduce

ambiguities, exceptions, as well as other challenges to regulatory compliance. Requirements

engineers need guidance as to how to address cross- references in order to comply with the

requirements of the law.

Impact: In complying with the more restrictive text, the system complies with both.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Health care, finance

Project size: 177 total cross-references within the HIPAA Privacy Rule. 360 total cross-

references within the GLB Act. a total of 367 cross- references within the GLBA Financial

Privacy Rule

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: U.S. Health Insurance Portability and Accountability Act (HI- PAA) Pri-

vacy Rule, the GrammLeachBliley Act (GLBA), and the GLBA Financial Privacy Rule

Repeatability: First time case study results

Lesson ID: LL102 12 [Maxwell et al., 2012b]

Journal: RE

Conference: N/A

Workshop: N/A

365

www.manaraa.com

Year: 2012

Lesson: Conflicts between obligations and privileges can be resolved by not exercising legal

privileges.

Source: Multi Case study

Rationale: Because an obligation trumps a privilege due to its priority.

Impact: N/A

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: Health care, finance

Project size: 177 total cross-references within the HIPAA Privacy Rule. 360 total cross-

references within the GLB Act. a total of 367 cross- references within the GLBA Financial

Privacy Rule

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: U.S. Health Insurance Portability and Accountability Act (HI- PAA) Pri-

vacy Rule, the GrammLeachBliley Act (GLBA), and the GLBA Financial Privacy Rule

Repeatability: First time case study results

Lesson ID: LL103 12 [Fitzgerald et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

366

www.manaraa.com

Lesson: Use Fitzgerald’s et al. failure prediction model

Source: Evaluating experiment

Rationale: Online feature request management systems are popular tools for gathering stake-

holders change requests during system evolution. Deciding which feature requests require

attention and how much upfront analysis to perform on them is an important problem in this

context: too little upfront analysis may result in inadequate functionalities being developed,

costly changes, and wasted development effort; too much upfront analysis is a waste of time

and resources. Early predictions about which feature requests are most likely to fail due to

insufficient or inadequate upfront analysis could facilitate such decisions.

Impact: An early failure prediction approach can benefit projects by guiding upfront require-

ments analysis

Target Object: Technique/method, tool

Type: Positive

Expression: Implicit

Application Domain: Apache web server, the Eclipse development environment, Firefox web

browser, the KDE operating system the Netbeans development environment, Thunderbird email

client, and the Wiki- media content management system.

Project size: 7 large-scale projects. The projects were all large in size, ranging from 5,000 to

50,000 feature requests.

RE Practice: N/A

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time experimental results

367

www.manaraa.com

Lesson ID: LL104 12 [Milne and Maiden, 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Using Milne’s et al. frame work to revealing the reality of power and politics in or-

ganisations or projects.

Source: Case study

Rationale: Power and politics are acknowledged as factors that can impact on the RE process .

Impact: Will not necessarily lead to the production of better requirements. A time-consuming

approach. An intrusive approach

Target Object: Technique/method

Type: Negative

Expression: Implicit

Application Domain: Website for a publishing company

Project size: The total project budget was in the region of £1 million, and the project duration

was around 1 year from initial scoping meetings through to implementation. The project in-

volved a large number of staff from within the organisation, together with external consultants

and third party suppliers.

RE Practice: N/A

RE Phase: Analysis

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

368

www.manaraa.com

Lesson ID: LL105 12 [McGee and Greer, 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use the requirements change taxonomy for change classification and measurement.

Source: Case study

Rationale: Changes to software requirements not only pose a risk to the successful delivery of

software applications but also provide opportunity for improved usability and value. Increased

understanding of the causes and consequences of change can support requirements manage-

ment and also make progress towards the goal of change anticipation.

Impact: Feasibly practical and will aid understanding of software evolution during develop-

ment as well as providing opportunities for retrospective project analysis to aid future process

and technique tailoring.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: IT services

Project size: Employs 300 staff, has offices in England and Ireland. The project has an esti-

mated cost in excess of a million pounds, comprises on average 15 software developers and

analysts

RE Practice: N/A

RE Phase: Analysis

Software Process: Waterfall

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

369

www.manaraa.com

Repeatability: First time case study results

Lesson ID: LL106 12 [Atladottir et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use a low-fidelty prototype to elicit requirements.

Source: Case study

Rationale: Identifying accurate user requirements early in the design cycle is of the utmost

importance in system development.

Impact: That users who have the system described to them with the aid of a low-fidelity pro-

totype are able to come up with a greater number of new or changed requirements than users

who work with a high- fidelity prototype. Working with the Hi-Fi prototype appeared to be

a hindrance for users, as they become so involved with the details of working the system that

they became distracted from contemplating new or changed features that it may have been ap-

propriate for them to suggest.

Target Object: Tool

Type: Positive

Expression: Implicit

Application Domain: HCD-suite, is innovative software that supports the training manage-

ment life cycle in a telecommunication company

Project size: The study included fourteen participants, all employees of a telecommunication

company, and their ages ranged from 24 to 60.

RE Practice: Protoyping

RE Phase: Elicitation

Software Process: N/A

370

www.manaraa.com

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: First time case study results

Lesson ID: LL107 12 [Sakhnini et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use Power- Only EPMcreatefor requirements elicitation rather than full EPMcrea tand

brainstorming.

Source: Controlled experiment

Rationale: Creativity is often needed in requirements elicitation, i.e., requirement idea gener-

ation; and techniques to enhance creativity are believed to be useful.

Impact: The results of the first experiment indicate that Power- Only EPMcreate is more ef-

fective, by the quantity and quality of the ideas generated, than the full EPMcreate, which is,

in turn, more effective than brainstorming.

Target Object: Technique/method

Type: Positive

Expression: Implicit

Application Domain: High school website

Project size: Six groups, two of which used POEPMcreate, two of which used EPMcreate, and

two of which used brainstorming. The second experiment compared the requirement ideas for

the very same CBS generated by eight groups, four of which used POEPMcreate and four of

which used EPMcreate.

RE Practice: Brainstorming

371

www.manaraa.com

RE Phase: Elicitation

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: Sir John A MacDonald High School

Repeatability: Results of two controlled experiments

Lesson ID: LL108 12 [Svensson et al., 2012]

Journal: RE

Conference: N/A

Workshop: N/A

Year: 2012

Lesson: Use the QUality PERformance (QUPER) model with estimations of benefit and cost

of quality targets in relation to market expectations as a basis for the architecting of quality

requirements.

Source: Case study

Rationale: Quality requirements play a critical role in driving architectural design and are an

important issue in software development. Therefore, quality requirements need to be consid-

ered, specified, and quantified early during system analysis and not later in the development

phase in an ad-hoc fashion.

Impact: In general, QUPER does not only help in creating a more aligned view of quality

requirements, but also to use one method to measure all quality requirements. All subjects

confirmed that QUPER would support and coordinate the early decision-making process, e.g.,

release planning. The QUPER model is aimed to facilitate the elicitation, specification, quan-

tification, and prioritization of QR.

Target Object: Technique/method

Type: Positive

372

www.manaraa.com

Expression: Implicit

Application Domain: Electronic payment-processing: payment terminals, transaction process-

ing, and development of saving- and customer-card systems

Project size: Company employs more than 250 employees, has more than 120,000 customers

and business partners

RE Practice: N/A

RE Phase: Elicitation, Specification, Prioritization

Software Process: N/A

Project Date: N/A

Recording Date: N/A

Organisation Name: N/A

Repeatability: Confirm previous results from the mobile handset

373

www.manaraa.com

Appendix D: Lesson Object and Tool Support

This appendix includes initial ideas for a lesson learnt tool in Requirements Engineering.

The tool is anticipated to support the following concepts:

• Lesson Object: A lesson object would encapsulate all the attributes of a lesson (see

Chapter 3 and 4) and applicable operations.

• Relationships: Defines the relationship among the objects (i.e., lessons). Example re-

lationships include: parent-child relationships (i.e., a lesson can be a parent of another

lesson), child-child relationships (i.e., two lessons are related in some way), include re-

lationships (i.e., a lesson includes another lessons), etc.

• Operations: Includes the operations that can be performed on the objects and their rela-

tionships. Operation may be simple ones such as: searching, creating, editing, deleting,

etc. or more complex operations including but not limited to: inheritance (a lesson in-

herits all the attributes of a parent lesson), generalisation, specialisation, etc.

374

www.manaraa.com

Appendix E: Published REFSQ 2013 Paper

This appendix includes the published paper in the proceedings of the 19th International Work-

ing Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2013),

titled “Maps of Lessons Learnt in Requirements Engineering: A Research Preview” au-

thored by Noorwali and Madhavji [Noorwali and Madhavji, 2013a]. Copyright permission has

been granted by Springer-Verlag to include the paper in the thesis.

Paper starts on the next page

375

www.manaraa.com

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 119–124, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Maps of Lessons Learnt in Requirements Engineering:
A Research Preview

Ibtehal Noorwali and Nazim H. Madhavji

University of Western Ontario, London, Canada
inoorwal@uwo.ca, madhavji@gmail.com

Abstract. [Context and Motivation] "Those who cannot remember the past
are condemned to repeat it" -- George Santayana. From the survey we
conducted of requirements engineering (RE) practitioners, over 70% seldom
use RE lessons in the RE process, though 85% of these would use such lessons
if readily available. Our observation, however, is that, RE lessons are scattered,
mainly implicitly, in the literature and practice, which, obviously, does not help
the situation. [Problem/Question] Approximately 90% of the survey
participants stated that not utilising RE lessons has significant negative impact
on product quality, productivity, project delays and cost overruns. [Principal
Ideas] We propose “maps” (or profiles) of RE lessons which, once populated,
would highlight weak (dark) and strong (bright) areas of RE (and hence RE
theories). Such maps would thus be: (a) a driver for research to “light up” the
darker areas of RE and (b) a guide for practice to benefit from the brighter
areas. [Contribution] The key contribution of this work is the concept of
“maps” of RE lessons.

Keywords: requirements engineering, lesson maps, lessons learnt, software
quality, empirical study.

1 Introduction

The importance of learning from past experiences has been stressed upon in the
literature [1, 5]. Yet, in a survey we conducted of 50 RE practitioners [12], 70% of the
respondents indicated that they seldom use RE lessons; 85% of these would use such
lessons if readily available; and 90% of them stated that not utilising RE lessons can
have significant negative impact on product quality, productivity, project delays and
cost overruns. This motivated us to investigate further on the topic of RE lessons.

An important goal of our research is to determine the state of lessons learnt (LL) in
RE. LLs can exist in various sources (e.g. literature, project documents, researchers
and practitioners, etc.). In attempting to achieve the aforementioned goal, we propose,
in this research preview paper, the concept of “lesson maps1” which, when populated

1 By “map” we mean “a diagram or collection of data showing the spatial arrangement or

distribution of something over an area” (New Oxford American Dictionary). It is not a road
map.

www.manaraa.com

120 I. Noorwali and N.H. Madhavji

with lessons elicited from the literature and practice, would expose weaker (darker)
and stronger (brighter) areas of RE. In this paper, we describe the proof of concept of
lesson maps with example lessons identified from published literature. The paper does
not depict fully populated maps, which is part of our ongoing research. The populated
maps are anticipated to promulgate research in the weaker areas and improve practice
in the brighter areas of RE.

Section 2 discusses related work. Section 3 describes the concept of lesson maps in
requirement engineering. Section 4, gives an example of a sample map. Section 5,
discusses the implications of the lesson maps and threats to validity. Section 6
concludes the paper and describes future work.

2 Related Work

Though LL are known in non-software disciplines (such as management [11],
education [4], medicine [13], and others), in this section we first touch upon LL in
software engineering (SE) followed by LL in RE.

The literature on lessons learnt in SE can be roughly categorized into (i)
discovering and sharing lessons learnt and (ii) process and software technologies to
support lessons learnt. Examples of the former category include the experience gained
at NASA’s Software Engineering Laboratory (see Basili et al. [2]) and the experience
described by Boehm [5]. Examples of the latter category include: Abdel-Hamid and
Madnick’s [1] post mortem diagnostic tool to learn from project failures; the
approximate reasoning-based approach [15]; Case-Based Reasoning (CBR) approach
[14]; and the Experience Factory Framework [3]. The process and software
technologies are used in organizational settings.

Unfortunately, in RE not much attention has been paid to lessons learnt. While
some literature discusses lessons learnt explicitly [6, 7], much of it is implicit [8]
making it difficult to utilise lessons in practice.

3 The Concept of a Map of RE Lessons

In an attempt to create a discipline surrounding lessons learnt in RE, we propose the
concept of a map of lessons learnt in RE. With reference to the definition of a map in
section 1, a map of RE lessons is based on two types of elements: (i) the content (i.e.
the lessons) and (ii) the context (i.e. specific attributes selected by the user). Example
context attributes are: RE practice, RE phase, process type, application domain,
project size, rationale, source, and others. In principle, therefore, it is possible to
produce many permutations of lesson maps, e.g.: RE practices; RE practices X RE
phases; RE practices X RE phases X application domains; project size X RE phases X
sources; application domain X process type; etc. The actual rendering of a map in
various permutations is a matter of technological support, which is outside the scope
of this concept paper.

www.manaraa.com

 Maps of Lessons Learnt in Requirements Engineering: A Research Preview 121

After populating a map with some lessons learnt, it can be indicative of the ‘state’
of lessons learnt in RE (in a project, organisation, body of knowledge, etc.) identified
by scarce (dark) and abundant (bright) areas of the map (see Table 1).

Table 1. An example map with context attributes X and Y

Let us assume that context attributes X and Y (selected by the user) are process
activities and practices in RE, respectively, where, they are depicted here as a table
but could be depicted in another form (e.g. hierarchically). LL1, LL2, etc., are the
lessons learnt relating to specific process activities and practices. Examples of dark
areas are: X3Y2 and X4Y2 and of bright areas are: X1Y1and X2Y3.

 X1 X2 X3 X4

Y1 LL1
LL2
LL3

LL7
LL8

LL13 LL6

Y2 LL16 LL4
LL5

Y3 LL17
LL18

LL9
LL10
LL11
LL12

LL14
LL15
LL6

LL6

4 Example

With reference to Table 2, we can see three lessons spread along RE phases (e.g.
elicitation, analysis, etc.): LL1, LL2, LL3.

LL1 [6]: Lesson: “Systematically validate and verify requirements by documenting
the rationale for requirements.” Related RE phase: Requirements validation. Related
RE practice: documentation. Domain: enterprise resource planning systems.
Expression: explicit. Type: negative. Rationale: Doing so let 39 out of our 67 teams
eliminate as much as 43 percent of the stated requirements.

LL2 [6]: Lesson: “use prototypes for validation only if you also do process walk-
throughs.” Related RE phase: Requirements validation. Related RE practice:
prototyping. Domain: enterprise resource planning systems. Expression: explicit.
Type: negative. Rationale: “In three subprojects, we observed a tendency to rely
exclusively on prototypes to negotiate requirements, which led to prototyping spirals
in which the teams never built the actual solution.”

LL3 [9]: Lesson: “use the adjustable requirements reuse approach where
requirements can be adjusted without independently creating and storing the different
variants of the requirement.” Related RE phase: elicitation. Related RE practice:
reuse. Domain: Fluid control equipment, pump, seal & valve manufacturing.
Expression: implicit. Type: negative. Rationale: “quality and readability of each

www.manaraa.com

122 I. Noorwali and N.H. Madhavji

requirement is improved since it is not split up to a general and a variable part. Since
it is not required to document every variation in a separate node it keeps the structure
of the requirements much more simple.”

With reference to LL1, Lesson denotes the content of the lesson. Context attributes
are such items as: Related RE phase, Related RE practice, Domain, etc. Expression
indicates whether a lesson was explicitly expressed as a lesson learnt in the literature,
or the context and surrounding literature had to be analysed to elicit the lesson. Type
can mean a positive lesson (one learnt from a successful past experience) or a
negative lesson (one learnt from an unsuccessful past experience). There are some
other context attributes not included in the lessons here because these are either not
known to the creator of the lesson or are empty. Examples are: related lessons
involved in solving a particular problem such as hazard analysis in a safety critical
system; contradictory lessons; specialization and generalization relationships, etc.
LL2 and LL3 have similar structure and attributes.

Assuming the user chooses ‘RE phases’ from the full set of context attributes, the
resultant map would be as shown in Figure 1. With the choice of additional context
attributes, the resultant map would contain corresponding entries of lessons. Table 2
shows the map with context attributes ‘RE phases’ and ‘RE practices’.

Upon analysing the map in Table 2, we note that in the elicitation phase, most of the
lessons learnt are positive; whereas, in the validation phase, most of the lessons learnt
are negative. This could be helpful in the practice of RE. Positive experience, for
example, would exude higher confidence in the way elicitation is carried out from
descriptive experiences of the RE community; whereas, negative experience would
suggest caution in the way requirements are validated. Also, if the lessons identified in
the map are found useful in a particular process type (e.g. iterative process), this could
lead to savings in costs, time and product quality in other projects in similar process
contexts. Caution is in order where process contexts differ (e.g. agile process).

Elicitation Analysis Specification Validation

LL3 LL1

LL2

Fig. 1. An example of a map of RE lessons with context attribute ‘RE phases’

Table 2. An example of a map of RE lessons with context attributes ‘RE phases’ and ‘RE
practices’

 Elicitation Analysis Specification Validation

Documentation LL1

Prototyping LL2

Using checklists

Reuse LL3

www.manaraa.com

 Maps of Lessons Learnt in Requirements Engineering: A Research Preview 123

5 Discussion

Implications of this research are anticipated for both practice and research. In
industry, use of lesson maps could be felt on project costs, time, and quality. In
research, the maps could help in generating new RE theories by identifying weak and
strong areas of LL across RE sub-processes and practices. Because patterns and anti-
patterns are built upon recurring events, situations, problems, etc., they seem to be
good candidates to be associated with lessons learnt in RE.

We identify two threats to validity that may be relevant when building lesson
maps: internal (researcher bias) and external validity. Researcher bias can be present
during elicitation of lessons learnt from archival sources and practice. External
validity can be threatened if the lessons are not generalised enough for use in other
contexts. These threats can be mitigated to some degree by obtaining feedback from
researchers and practitioners to validate the maps and elicited lessons and by
identifying and analyzing the context of each lesson.

6 Conclusion and Future Work

In this research preview, we introduce the concept of maps for lessons learnt in
requirements engineering. A map consists of actual lessons and the context of these
lessons (e.g., RE phases, RE practices, application domains, implicit/explicit lessons,
etc.) – see section 3. In section 4, we give an illustrative example of a map (with
several lessons [6,9]) that is anticipated to be of benefit to both practitioners and
researchers in RE. Based on the concept of the map and the example (described in
sections 3 and 4), we conclude that it is a promising stepping-stone towards defining
the state of lessons learnt in the field of RE. As next steps in this research, we intend
to further explore the concept of the map and subsequently elicit lessons learnt, from
various sources in order to gain an understanding of the state of lessons learnt in RE.
Further, we have begun to build technological support to operationalise lesson maps
for use in RE projects.

References

1. Abdel-Hamid, T.K., Madnick, S.E.: The Elusive Silver Lining: How we Fail to Learn from
Software Development Failures. J. MIT Sloan Management Review 32(1), 39–48 (1990)

2. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons Learned from 25
Years of Process Improvement: The Rise and Fall of the NASA Software Engineering
Laboratory. In: International Conference on Software Engineering, pp. 69–79. ACM,
Orlando (2002)

3. Basili, V.R., Tesoriero, R., Costa, P., Lindvall, M., Rus, I., Shull, F., Zelkowitz, M.:
Building an Experience Base for Software Engineering: A report on the first CeBASE
eWorkshop. In: Product-Focused Software Process Improvement, Kaiserslautern,
pp. 110–125 (2001)

www.manaraa.com

124 I. Noorwali and N.H. Madhavji

4. Bodycott, P., Walker, A.: Teaching Abroad: Lessons Learned about Inter-Cultural
Understanding for Teachers in Higher Education. J. Teaching in Higher Education 5(1),
79–94 (2000)

5. Boehm, B.: A View of 20th and 21st Century Software Engineering. In: International
Conference on Software Engineering, pp. 12–29. ACM, Shanghai (2006)

6. Damian, D.: Stakeholders in Global Requirements Engineering: Lessons Learned from
Practice. IEEE Software 24(2), 21–27 (2007)

7. Daneva, M.: ERP Requirements Engineering Practice: Lessons Learned. IEEE Software
Journal 21(2), 26–33 (2004)

8. Ebert, C.: Understanding the Product Life Cycle: Four Key Requirements Engineering
Techniques. IEEE Software Journal 23(3), 19–25 (2006)

9. Hauksdottir, D., Vermehren, A., Savolainen, J.: Requirements Reuse at Danfoss. In: 20th
IEEE Requirements Engineering Conference, pp. 309–314. IEEE, Chicago (2012)

10. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. John
Wiley, New York (1998)

11. Lee, M.: Making Lessons Learned a Worthwhile Investment. J. PM World Today 5(7)
(2008)

12. Noorwali, I., Madhavji, N.H.: A Survey of Lessons Learnt in Requirements Engineering.
Technical Report No. 750, Dept. of Computer Science, University of Western Ontario
(2012)

13. Rogers, D.A., Elstein, A.S., Bordage, G.: Improving Continuing Medical Education for
Surgical Techniques: Applying the Lessons Learned in the First Decade of Minimal
Access Surgery. J. Annals of Surgery 233(2), 159–166 (2001)

14. Sary, C., Mackey, W.: A Case-Based Reasoning Approach for the Access and Reuse of
Lessons Learned. In: Fifth Annual Symposium of the National Council on Systems
Engineering, St. Louis, pp. 249–256 (1995)

15. Vandeville, J.V., Shaikh, M.A.: A Structured Approximate Reasoning-Based Approach for
Gathering “Lessons Learned” Information from System Development Projects. J. Systems
Engineering 2(4), 242–247 (1999)

16. Weber, R., Aha, D.W., Becerra-Fernandez, I.: Intelligent Lessons Learned Systems. J.
Expert Systems with Applications 20(1), 17–34 (2001)

17. Wellman, J.: Lessons Learned about Lessons Learned. J. Organization Development 25(3),
65–72 (2007)

www.manaraa.com

Bibliography

[Abdelhamid and Madnick, 1990] Abdelhamid, T. K. and Madnick, S. E. (1990). The elu-

sive silver lining: How we fail to learn from software development failures. MIT Sloan

Management Review, 32(1):39–48.

[Aceituna et al., 2011] Aceituna, D., Do, H., Walia, G. S., and Lee, S.-W. (2011). Evaluating

the use of model-based requirements verification method: A feasibility study. In Proceed-

ings of the 1st International Workshop on Empirical Requirements Engineering (EmpiRE),

pages 13–20, Trento, Italy. IEEE.

[Adam, 2011] Adam, S. (2011). Towards faster application engineering through better in-

formed elicitation – a research preview. In Fricker, S. and Seyff, N., editors, Proceedings of

the 1st International Requirements Engineering Efficiency Workshop (REEW), Essen, Ger-

many.

[Allen, 2003] Allen, R. (2003). The Penguin English Dictionary. Penguin, revised edition

edition.

[Alrajeh et al., 2012] Alrajeh, D., Kramer, J., van Lamsweerde, A., Russo, A., and Uchitel, S.

(2012). Generating obstacle conditions for requirements completeness. In Proceedings of

the 34th International Conference on Software Engineering (ICSE), pages 705–715, Zurich.

IEEE, IEEE.

[Andrade et al., 2007] Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriquez, S., Rodriguez-

Paton, A., and Silva, A. (2007). Towards a lessons learned system for critical software.

Reliability Engineering and System Safety, 92(7):902–913.

382

www.manaraa.com

BIBLIOGRAPHY 383

[Andrade et al., 2013] Andrade, J., Ares, J., Martinez, M.-A., Pazos, J., Rodriquez, S.,

Romera, J., and Suarez, S. (2013). An architectural model for software testing lesson learned

systems. Information and Software Technology, 55(1):18–34.

[Anh et al., 2012] Anh, N. D., Cruzex, D. S., Conradi, R., Host, M., Franch, X., and Ay-

ala, C. (2012). Collaborative resolution of requirements mismatches when adopting open

source components. In Regnell, B. and Damian, D., editors, Proceedings of the 18th In-

ternational Working Conference on Requirements Engineering: Foundation for Software

Quality, LNCS, pages 77–93, Essen, Germany. S.

[Arora et al., 2012] Arora, S., Sampath, P., and S, R. (2012). Resolving uncertainty in auto-

motive feature interactions. In Proceedings of the 20th IEEE International Requirements

Engineering Conference, pages 21–30, Chicago, Illinois. IEEE, IEEE.

[Asnar et al., 2011] Asnar, Y., Giorgini, P., and Mylopoulos, J. (2011). Goal-driven risk as-

sessment in requirements engineering. Requirements Engineering, 16(2):101–116.

[Atladottir et al., 2012] Atladottir, G., Hvannberg, E. T., and Gunnarsdottir, S. (2012). Com-

paring task practicing and prototype fidelities when applying scenario acting to elicit re-

quirements. Requirements Engineering, 17(3):157–170.

[Bahrs and Nguyen, 2011] Bahrs, P. and Nguyen, T. (2011). Smarter architecture and engi-

neering: Game changer for requirements management: A position paper. In Proceedings

of the 1st Workshop on Requirements for Systems, Services, and Systems of Systems, pages

1–5, Trento, Italy. IEEE.

[Ballejos and Montagna, 2011] Ballejos, L. C. and Montagna, J. M. (2011). Modeling stake-

holders for information systems design processes. Requirements Engineering, 16(4):281–

296.

[Basili et al., 1994] Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The experience

factory. Encycolpedia of Software Engineering, 2 Volume Set:469–476.

www.manaraa.com

BIBLIOGRAPHY 384

[Basili et al., 2002] Basili, V. R., McGarry, F. E., Pajerski, R., and Zelkowitz, M. V. (2002).

Lessons learned from 25 years of process improvement: The rise and fall of the nasa soft-

ware engineering laboratory. In Proceedings of the 24th International Conference on Soft-

ware Engineering (ICSE), pages 69–79, Orlando, Florida, USA. IEEE, IEEE.

[Behnam et al., 2012] Behnam, S. A., Amyot, D., Mussbacher, G., Braun, E., Cartwright, N.,

and Saucier, M. (2012). Using the goal-oriented pattern family framework for modelling

outcome-based regulations. In Proceedings of the 2nd International Workshop on Require-

ments Patterns (RePa), pages 35–40, Chicago, Illinois. IEEE, IEEE.

[Berenbach, 2012] Berenbach, B. (2012). A 25 year retrospective on model-driven require-

ments engineering. In Proceedings of the 2nd International Workshop on Model-Driven

Requirements Engineering (MoDRE), pages 87–91, Chicago, Illinois. IEEE, IEEE.

[Berenbach et al., 2012] Berenbach, B., Schneider, F., and Naughton, H. (2012). The use

of a requirements modeling language for industrial applications. In Proceedings of the

20th IEEE International Requirements Engineering Conference, pages 285–290, Chicago,

Illinois. IEEE, IEEE.

[Birk and Tautz, 1998] Birk, A. and Tautz, C. (1998). Knowledge management of software

engineering lessons learned. Technical Report 002.98/E, Fraunhofer IESE, Germany.

[Bjarnason et al., 2012] Bjarnason, E., Berntsson, S., and Regnell, B. (2012). Evidence-based

timelines for project retrospectives a method for assessing requirements engineering in

context. In Proceedings of the 2nd IEEE International Workshop on Empirical Requirements

Engineering (EmpiRE), pages 17–24, Chicago, Illinois. IEEE, IEEE.

[Bjarnason et al., 2011] Bjarnason, E., Wnuk, K., and Regnell, B. (2011). Requirements are

slipping through the gaps - a case study on causes and effects of communication gaps in

large-scale software development. In Proceedings of the 19th International Requirements

Engineering Conference, pages 37–46, Trento, Italy. IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 385

[Bodycott and Walker, 2001] Bodycott, P. and Walker, A. (2001). Teaching abroad: Lessons

learned about inter-cultural understanding for teacher in higher education. Teaching in

Higher Education, 5(1):79–94.

[Boehm, 2006] Boehm, B. W. (2006). A view of 20th and 21st century software engineering.

In Proceedings of the 28th International Conference on Software Engineering (ICSE), pages

12–29, Shanghai, China. IEEE, ACM.

[Borges et al., 2011] Borges, R. V., Garcez, A. d., Lamb, L. C., and Nuseibeh, B. (2011).

Learning to adapt requirements specifications of evolving systems (nier track). In Pro-

ceedings of the 33rd International Conference on Software Engineering, pages 856–859,

Waikiki, Honolulu. IEEE, IEEE/ACM.

[Bornstein et al., 2004] Bornstein, R. F., Lewis-Beck, M. S., Bryman, A., and Liao, T. F.

(2004). The SAGE Encyclopedia of Social Science Research Methods. Sage Publications.

[Boulila et al., 2011] Boulila, N., Hoffmann, A., and Herrmann, A. (2011). Using storytelling

to record requirements: Elements for an effective requirements elicitation approach. In

Proceedings of the 4th International Workshop on Multimedia and Enjoyable Requirements

Engineering (MERE’11), pages 9–16, Trento, Italy. IEEE.

[Boutkova, 2011] Boutkova, E. (2011). Pragmatic variability management in requirement

specifications with ibm rational doors. In Fricker, S. and Seyff, N., editors, Proceedings

of the 1st International Requirements Engineering Efficiency Workshop (REEW), Essen,

Germany.

[Boutkova and Houdek, 2011] Boutkova, E. and Houdek, F. (2011). Semi-automatic identifi-

cation of features in requirement specifications. In Proceedings of the 19th International

Requirements Engineering Conference, pages 313–318, Trento, Italy. IEEE, IEEE.

[Braun et al., 2012] Braun, E., Cabot, J., Shamsaei, A., Behnam, S. A., Richards, G., Muss-

bacher, G., Alhaj, M., and Tawhid, R. (2012). Drafting and modeling of regulations: Is it

www.manaraa.com

BIBLIOGRAPHY 386

being done backwards? In Proceedings of the 5th International Workshop on Requirements

Engineering and Law (RELAW), pages 1–6, Chicago, Illinois. IEEE, IEEE.

[Brill and Knauss, 2011] Brill, O. and Knauss, E. (2011). Structured and unobtrusive obser-

vation of anonymous users and their context for requirements elicitation. In Proceedings of

the 19th International Requirements Engineering Conference, pages 175–184, Trento, Italy.

IEEE, IEEE.

[Calefato et al., 2012] Calefato, F., Damian, D., and Lanubile, F. (2012). Computer-mediated

communication to support distributed requirements elicitations and negotiations tasks. Em-

pirical Software Engineering, 17(6):640–674.

[Cambridge, 2013a] Cambridge (2013a). Cambridge dictionaries online.

http://dictionary.cambridge.org/dictionary/british/lesson.

[Cambridge, 2013b] Cambridge (2013b). Cambridge dictionaries online.

http://machaut.uchicago.edu/cgi-bin/WEBSTER.sh?WORD=lesson.

[Carvallo and Franch, 2011] Carvallo, J. P. and Franch, X. (2011). Requirements negotiation

for multilayer system components. In Proceedings of the 19th International Requirements

Engineering Conference, pages 285–290, Trento, Italy. IEEE, IEEE.

[Charrada et al., 2012] Charrada, E. B., Koziolek, A., and Glinz, M. (2012). Identifying out-

dated requirements based on source code changes. In Proceedings of the 20th IEEE In-

ternational Requirements Engineering Conference, pages 61–70, Chicago, Illinois. IEEE,

IEEE.

[Chen et al., 2011] Chen, B., Peng, X., Yu, Y., and Zhao, W. (2011). Are your sites down?

requirements-driven self-tuning for the survivability of web systems*. In Proceedings of

the 19th International Requirements Engineering Conference, pages 219–228, Trento, Italy.

IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 387

[Chernak, 2012] Chernak, Y. (2012). Requirements composition table explained. In Proceed-

ings of the 20th IEEE International Requirements Engineering Conference, pages 273–278,

Chicago, Illinois. IEEE, IEEE.

[Chillarege, 1999] Chillarege, R. (1999). Software testing best practices. Technical report,

IBM Research.

[Chopra and Singh, 2011] Chopra, A. K. and Singh, M. P. (2011). Colaba: Collaborative de-

sign of cross-organizational processes. In Proceedings of the 1st Workshop on Requirements

for Systems, Services, and Systems of Systems, pages 36–43, Trento, Italy. IEEE.

[Cleland-Huang et al., 2012] Cleland-Huang, J., Mader, P., Mirakholi, M., and Amornbor-

vornwong, S. (2012). Breaking the big-bang practice of traceability: Pushing timely trace

recommendations to project stakeholders. In Proceedings of the 20th IEEE International

Requirements Engineering Conference, pages 231–240, Chicago, Illinois. IEEE, IEEE.

[Collins, 2013] Collins (2013). Collins dictionary. http://www.collinsdictionary.com/dictionary/english/lesson.

[Cortier et al., 2011] Cortier, V., Detrey, J., Gaudry, P., Sur, F., and Thome, E. (2011). Ballot

stuffing in a postal voting system. In Proceedings of the 1st Workshop on Requirements

Engineering for E-Voting Systems, pages 27–36, Trento, Italy. IEEE.

[Creswell, 2008] Creswell, J. W. (2008). Research Design: Qualitative, Quantitative, and

Mixed Methods Approaches. Sage Publications, 3rd edition.

[Damian, 2007] Damian, D. (2007). Stakeholders in global requirements engineering:

Lessons learned from practice. IEEE Software Journal, 24(2):21–27.

[Daneva, 2004] Daneva, M. (2004). Erp requirements engineering practice: Lessons learned.

IEEE Software Journal, 21(2):26–33.

[Daramola et al., 2012] Daramola, O., Sindre, G., and Stalhane, T. (2012). Pattern-based secu-

rity requirements specification using ontologies and boilerplates. In Proceedings of the 2nd

www.manaraa.com

BIBLIOGRAPHY 388

International Workshop on Requirements Patterns (RePa), pages 54–59, Chicago, Illinois.

IEEE, IEEE.

[Daramola et al., 2011] Daramola, O., Stalhane, T., Sindre, G., and Omoronyia, I. (2011). En-

abling hazard identification from requirements and reuse-oriented hazop analysis. In Pro-

ceedings of the 4th International Workshop on Managing Requirements Knowledge, pages

3–11, Trento, Italy. IEEE.

[Dekhtyar et al., 2011] Dekhtyar, A., Dekhtyar, O., Holden, J., Hayes, J. H., Cuddeback, D.,

and Kong, W.-K. (2011). On human analyst performance in assisted requirements tracing:

Statistical analysis. In Proceedings of the 19th International Requirements Engineering

Conference, pages 111–120, Trento, Italy. IEEE, IEEE.

[Dick and Woods, 1997] Dick, J. and Woods, E. (1997). Lessons learned from rigorous system

software development. Information and Software Technology, 39(8):551–560.

[Dictionary.com, 2013a] Dictionary.com (2013a). Dictionary.com.

http://dictionary.reference.com/browse/lesson.

[Dictionary.com, 2013b] Dictionary.com (2013b). Dictionary.com.

http://dictionary.reference.com/browse/map?s=t.

[Dieste and Juristo, 2011] Dieste, O. and Juristo, N. (2011). Systematic review and aggrega-

tion of empirical studies on elicitation techniques. IEEE Transactions on Software Engi-

neering, 37(2):283–304.

[Dietsch et al., 2011] Dietsch, D., Arenis, S. F., Westphal, B., and Podelski, A. (2011). Dis-

ambiguation of industrial standards through formalization and graphical languages. In Pro-

ceedings of the 19th International Requirements Engineering Conference, pages 265–270,

Trento, Italy. IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 389

[DOE-STD-7501-99, 1999] DOE-STD-7501-99 (1999). The doe corporate lessons learned

program. Technical Report DOE-STD-7501-99, United States Department of Energy, Wash-

ington, DC.

[El-Sharkawy and Schmid, 2011] El-Sharkawy, S. and Schmid, K. (2011). A heuristic ap-

proach for supporting product innovation in requirements engineering: A controlled experi-

ment. In Proceedings of the 17th International Working Conference on Requirements Engi-

neering: Foundation for Software Quality, LNCS, pages 78–93, Essen, Germany. Springer-

Verlag.

[Engelsman and Wieringa, 2012] Engelsman, W. and Wieringa, R. (2012). Goal-oriented re-

quirements engineering and enterprise architecture: Two case studies and some lessons

learned. In Regnell, B. and Damian, D., editors, Proceedings of the 18th International Work-

ing Conference on Requirements Engineering: Foundation for Software Quality, LNCS,

pages 306–320, Essen, Germany. Springer-Verlag.

[Ernst et al., 2011] Ernst, N. A., Borgida, A., and Jureta, I. J. (2011). Finding incremental

solutions for evolving requirements. In Proceedings of the 19th International Requirements

Engineering Conference, pages 15–24, Trento, Italy. IEEE, IEEE.

[Erra and Scanniello, 2011] Erra, U. and Scanniello, G. (2011). Assessing think-pair-square in

distributed modeling of use case diagrams. In Proceedings of the 1st International Workshop

on Empirical Requirements Engineering (EmpiRE), pages 77–84, Trento, Italy. IEEE.

[Fitzgerald et al., 2012] Fitzgerald, C., Letier, E., and Finkelstein, A. (2012). Early failure

prediction in feature request management systems: An extended study. Requirements Engi-

neering, 17(2):117–132.

[Fricker and Schumacher, 2012] Fricker, S. and Schumacher, S. (2012). Release planning with

feature trees: Industrial case. In Regnell, B. and Damian, D., editors, Proceedings of the 18th

www.manaraa.com

BIBLIOGRAPHY 390

International Working Conference on Requirements Engineering: Foundation for Software

Quality, LNCS, pages 288–305, Essen, Germany. Springer-Verlag.

[Gacitua et al., 2011] Gacitua, R., Sawyer, P., and Gervasi, V. (2011). Relevance-based ab-

straction identification: Technique and evaluation. Requirements Engineering, 16(3):251–

265.

[Gervasi and Zowghi, 2011] Gervasi, V. and Zowghi, D. (2011). Mining requirements links.

In Proceedings of the 17th International Working Conference on Requirements Engineering:

Foundation for Software Quality, LNCS, pages 196–201, Essen, Germany. Springer-Verlag.

[Gibson et al., 2011] Gibson, J. P., MacNamara, D., and Ken, O. (2011). Just like paper and

the 3-colour protocol: A voting interface requirements engineering case study. In Proceed-

ings of the 1st Workshop on Requirements Engineering for E-Voting Systems, pages 66–75,

Trento, Italy. IEEE.

[Gonzales and Leroy, 2011] Gonzales, C. K. and Leroy, G. (2011). Eliciting user requirements

using appreciative inquiry. Empirical Software Engineering, 16(6):733–772.

[Gordon and Breaux, 2011] Gordon, D. G. and Breaux, T. D. (2011). Comparing require-

ments from multiple jurisdictions. In Proceedings of the 4th International Workshop on

Requirements Engineering and Law (RELAW), pages 43–49, Trento, Italy. IEEE.

[Gordon and Breaux, 2012] Gordon, D. G. and Breaux, T. D. (2012). Reconciling multi-

jurisdictional legal requirements: A case study in requirements water marking. In Proceed-

ings of the 20th IEEE International Requirements Engineering Conference, pages 91–100,

Chicago, Illinois. IEEE, IEEE.

[Goulao et al., 2011] Goulao, M., Moreira, A., Araujo, J., and Santos, J. P. (2011). Streamlin-

ing scenario modeling with model-driven development: a case study. In Proceedings of the

Model-Driven Requirements Engineering Workshop (MoDRE), pages 55–63, Trento, Italy.

IEEE.

www.manaraa.com

BIBLIOGRAPHY 391

[Greenyer et al., 2012] Greenyer, J., Sharifloo, A. M., Cordy, M., and Heymans, P. (2012).

Efficient consistency checking of scenario-based product-line specifications. In Proceed-

ings of the 20th IEEE International Requirements Engineering Conference, pages 161–170,

Chicago, Illinois. IEEE, IEEE.

[Gross and Doerr, 2012] Gross, A. and Doerr, J. (2012). What you need is what you get! the

vision of view-based requirements specifications. In Proceedings of the 20th IEEE Inter-

national Requirements Engineering Conference, pages 171–180, Chicago, Illinois. IEEE,

IEEE.

[Gross et al., 2012] Gross, A., Jurkiewicz, J., Doerr, J., and Nawrocki, J. (2012). Investigating

the usefulness of notations in the context of requirements engineering: Research agenda

and lessons learned. In Proceedings of the 2nd IEEE International Workshop on Empirical

Requirements Engineering (EmpiRE), pages 9–16, Chicago, Illinois. IEEE, IEEE.

[Hauksdottir et al., 2012] Hauksdottir, D., Vermehren, A., and Savolainen, J. (2012). Require-

ments reuse at danfoss. In Proceedings of the 20th IEEE International Requirements Engi-

neering Conference, pages 309–314, Chicago, Illinois. IEEE, IEEE.

[Heaven and Letier, 2011] Heaven, W. and Letier, E. (2011). Simulating and optimising de-

sign decisions in quantitative goal models. In Proceedings of the 19th International Re-

quirements Engineering Conference, pages 79–88, Trento, Italy. IEEE, IEEE.

[Helferich and Mautsch, 2011] Helferich, A. and Mautsch, L. O. (2011). Defining product

lines and product variants based on prioritization of customer seg- ments and customer re-

quirements. In Krams, B. and Schockert, S., editors, Proceedings of the 2nd Workshop

on Requirements Prioritization for Customer-Oriented Software- Development (RePriCo),

Essen, Germany.

[Hoffmann et al., 2011] Hoffmann, A., Peters, C., and Leimeister, J. M. (2011). Improving

corporate portal design by using service- oriented requirements engineering and service

www.manaraa.com

BIBLIOGRAPHY 392

bundling. In Proceedings of the 1st Workshop on Requirements for Systems, Services, and

Systems of Systems, pages 44–49, Trento, Italy. IEEE.

[Huber, 1991] Huber, G. P. (1991). Organizational learning: The contributing processes and

the literatures. Organization Science, 2(1):88–115.

[Hussain et al., 2012] Hussain, I., Ormandjieva, O., and Kosseim, L. (2012). Lasr: A tool for

large scale annotation of software requirements. In Proceedings of the 2nd IEEE Interna-

tional Workshop on Empirical Requirements Engineering (EmpiRE), pages 57–60, Chicago,

Illinois. IEEE, IEEE.

[Isaacs and Berry, 2011] Isaacs, D. and Berry, D. M. (2011). Developers want requirements,

but their project manager doesn’t; and a possibly transcendent hawthorne effect. In Proceed-

ings of the 1st International Workshop on Empirical Requirements Engineering (EmpiRE),

pages 37–44, Trento, Italy. IEEE.

[Jalili et al., 2011] Jalili, Y. A., Nasrin, S., Fakhimi, S., and Khakhian, Y. B. (2011). How

can we systematically manage lessons learned in projects? In Proceedings of the 2nd

International Conference on Construction and Project Management, volume 15, Singapore.

IACSIT Press.

[Johnson and Christensen, 2007] Johnson, B. and Christensen, L. B. (2007). Educational Re-

search: Quantitative, Qualitative, and Mixed Approaches. Sage Publications.

[Jones, 2011] Jones, P. (2011). Can requirements tool vendors tell us about user needs? In Pro-

ceedings of the 4th International Workshop on Managing Requirements Knowledge, pages

31–34, Trento, Italy. IEEE.

[Kamalrudin et al., 2011] Kamalrudin, M., Hosking, J., and Grundy, J. (2011). Improving

requirements quality using essential use case interaction patterns. In Proceedings of the

33rd International Conference on Software Engineering, pages 531–540, Waikiki, Hon-

olulu. IEEE, IEEE/ACM.

www.manaraa.com

BIBLIOGRAPHY 393

[Kaner et al., 2001] Kaner, C., Bach, J., and Pettichord, B. (2001). Lessons Learned in Soft-

ware Testing: A Context Driven Approach. Wiley, 1 edition.

[Kitchenham, 2004] Kitchenham, B. (2004). Procedures for performing systematic reviews.

Joint Technical Report TR/SE-0401, Keele University, Australia.

[Kitchenham et al., 2002] Kitchenham, B., Pfleeger, S. L., Hoaglin, Pickard, L. M., Jones,

P. W., C., D., El-Emam, K., and Rosenberg, J. (2002). Preliminary guidelines for empirical

research in software engineering. IEEE Transactions on Software Engineering, 28(8):721–

734.

[Knauss et al., 2012] Knauss, E., Damian, D., Poo-Caamano, G., and Cleland-Huang, J.

(2012). Detecting and classifying patterns of requirements clarifications. In Proceed-

ings of the 20th IEEE International Requirements Engineering Conference, pages 251–260,

Chicago, Illinois. IEEE, IEEE.

[Knauss et al., 2011] Knauss, E., Houmb, S., and Schneider, K. (2011). 4 supporting re-

quirements engineers in recognising security issues. In Proceedings of the 17th Interna-

tional Working Conference on Requirements Engineering: Foundation for Software Quality,

LNCS, pages 4–18, Essen, Germany. Springer-Verlag.

[Knauss and Schneider, 2012] Knauss, E. and Schneider, K. (2012). Supporting learning or-

ganisations in writing better requirements documents based on heuristic critiques. In Reg-

nell, B. and Damian, D., editors, Proceedings of the 18th International Working Conference

on Requirements Engineering: Foundation for Software Quality, LNCS, pages 165–171,

Essen, Germany. Springer-Verlag.

[Kof and Penzenstadler, 2011] Kof, L. and Penzenstadler, B. (2011). Faster from requirements

documents to system models: Interactive semi-automatic translation. In Fricker, S. and

Seyff, N., editors, Proceedings of the 1st International Requirements Engineering Efficiency

Workshop (REEW), Essen, Germany.

www.manaraa.com

BIBLIOGRAPHY 394

[Kong and Hayes, 2011] Kong, W.-K. and Hayes, J. H. (2011). Proximity-based traceability:

An empirical validation using ranked retrieval and set-based measures. In Proceedings of

the 1st International Workshop on Empirical Requirements Engineering (EmpiRE), pages

45–52, Trento, Italy. IEEE.

[Kotonya and Sommerville, 1998] Kotonya, G. and Sommerville, I. (1998). Requirements En-

gineering: Processes and Techniques. John Wiley and Sons, England.

[Kukreja et al., 2012] Kukreja, N., Payyavula, S. S., Boehm, B. W., and Padmanabhuni, S.

(2012). Selecting an appropriate framework for value-based requirements prioritization:

A case study. In Proceedings of the 20th IEEE International Requirements Engineering

Conference, pages 303–308, Chicago, Illinois. IEEE, IEEE.

[Lauesen, 2012] Lauesen, S. (2012). Why the electronic land registry failed. In Regnell,

B. and Damian, D., editors, Proceedings of the 18th International Working Conference on

Requirements Engineering: Foundation for Software Quality, LNCS, pages 1–15, Essen,

Germany. Springer-Verlag.

[Lauesen and Kuhail, 2012] Lauesen, S. and Kuhail, M. A. (2012). Task descriptions versus

use cases. Requirements Engineering, 17(1):3–18.

[Lee, 2008] Lee, M. (2008). Making lessons learned a worthwhile investment. PM World

Today, 10(7).

[Li et al., 2011] Li, Y., Narayan, N., Helming, J., and Maximilian, K. (2011). A domain spe-

cific requirements model for scientific computing (nier track). In Proceedings of the 33rd In-

ternational Conference on Software Engineering, pages 848–851, Waikiki, Honolulu. IEEE,

IEEE/ACM.

[Liaskos et al., 2011] Liaskos, S., McIlraith, S. A., Sohrabi, S., and Mylopoulos, J. (2011).

Representing and reasoning about preferences in requirements engineering. Requirements

Engineering, 16(3):227–249.

www.manaraa.com

BIBLIOGRAPHY 395

[Lindvall et al., 2001] Lindvall, M., Frey, M., Costa, P., and Tesoriero, R. (2001). Lessons

learned about structuring and describing experience for three experience bases. In Proceed-

ings of the Third International Workshop on Advances in Learning Software Organizations,

LSO ’01, pages 106–119, London, UK. Springer-Verlag.

[Loconsole et al., 2011] Loconsole, A., Gruber, H., Nae, A., and Regnell, B. (2011). Construc-

tion and evaluation of an algorithmic and distributed prioritization method. In Krams, B.

and Schockert, S., editors, Proceedings of the 2nd Workshop on Requirements Prioritization

for Customer-Oriented Software- Development (RePriCo), Essen, Germany.

[Loft et al., 2012] Loft, M. S., Nielsen, S. S., Norskov, K., and Jorgensen, J. B. (2012). Inter-

play between requirements, software architecture, and hardware constraints in the develop-

ment of a home control user interface. In Proceedings of the 1st International Workshop on

the Twin Peaks of Requirements and Architecture (TwinPeaks), pages 1–6, Chicago, Illinois.

IEEE, IEEE.

[Luna et al., 2011] Luna, E. R., Rossi, G., and Garrigos, I. (2011). Webspec: A visual lan-

guage for specifying interaction and navigation requirements in web applications. Require-

ments Engineering, 16(4):297–321.

[Lutz et al., 2012] Lutz, R., Lutz, J., Lathrop, J., Klinge, T., Mathur, D., Stull, D., Bergquist,

T., and Henderson, E. (2012). Requirements analysis for a product family of dna nanode-

vices. In Proceedings of the 20th IEEE International Requirements Engineering Conference,

pages 211–220, Chicago, Illinois. IEEE, IEEE.

[Macmillan, 2013a] Macmillan (2013a). Macmillan dictionary.

http://www.macmillandictionary.com/dictionary/american/lesson.

[Macmillan, 2013b] Macmillan (2013b). Macmillan dictionary.

http://www.macmillandictionary.com/dictionary/british/map.

www.manaraa.com

BIBLIOGRAPHY 396

[Mahaux et al., 2011] Mahaux, M., Heymans, P., and Saval, G. (2011). Discovering sustain-

ability requirements: An experience report. In Proceedings of the 17th International Work-

ing Conference on Requirements Engineering: Foundation for Software Quality, LNCS,

pages 19–33, Essen, Germany. Springer-Verlag.

[Marincic et al., 2011] Marincic, J., Mader, A., and Wieringa, R. (2011). Validation of em-

bedded system verification models. In Proceedings of the Model-Driven Requirements En-

gineering Workshop (MoDRE), pages 48–54, Trento, Italy. IEEE.

[Markov et al., 2011] Markov, G. A., Hoffmann, A., and Creighton, O. (2011). Requirements

engineering process improvement: An industrial case study. In Proceedings of the 17th

International Working Conference on Requirements Engineering: Foundation for Software

Quality, LNCS, pages 34–47, Essen, Germany. Springer-Verlag.

[Mashkoor and Jacquot, 2011] Mashkoor, A. and Jacquot, J.-P. (2011). Utilizing event-b for

domain engineering: A critical analysis. Requirements Engineering, 16(3):191–207.

[Massacci et al., 2012] Massacci, F., Nagaraj, D., Paci, F., Tran, L. M. S., and Tedeschi, A.

(2012). Assessing a requirements evolution approach: Empirical studies in the air traffic

management domain. In Proceedings of the 2nd IEEE International Workshop on Empirical

Requirements Engineering (EmpiRE), pages 49–56, Chicago, Illinois. IEEE, IEEE.

[Massey et al., 2011] Massey, A. K., Smith, B., Otto, P. N., and Anton, A. I. (2011). Assess-

ing the accuracy of legal implementation readiness decisions. In Proceedings of the 19th

International Requirements Engineering Conference, pages 207–216, Trento, Italy. IEEE,

IEEE.

[Maxwell et al., 2012a] Maxwell, J. C., Anton, A. I., and Swire, P. (2012a). Managing chang-

ing compliance requirements by predicting regulatory evolution: An adaptability frame-

work. In Proceedings of the 20th IEEE International Requirements Engineering Confer-

ence, pages 101–110, Chicago, Illinois. IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 397

[Maxwell et al., 2012b] Maxwell, J. C., Anton, A. I., Swire, P., Riaz, M., and McGraw, C. M.

(2012b). A legal cross-references taxonomy for reasoning about compliance requirements.

Requirements Engineering, 17(2):99–115.

[McGee and Greer, 2012] McGee, S. and Greer, D. (2012). Towards an understanding of the

causes and effects of software requirements change: Two case studies. Requirements Engi-

neering, 17(2):133–155.

[McLaughlin, 1987] McLaughlin, M. W. (1987). Learning from experience: Lessons from

policy implementation. Educational Evaluation and Policy Analysis, 9(2):171–178.

[Mendizabal et al., 2012] Mendizabal, O. M., Spier, M., and Saad, R. (2012). Log-based ap-

proach for performance requirements elicitation and prioritization. In Proceedings of the

20th IEEE International Requirements Engineering Conference, pages 297–302, Chicago,

Illinois. IEEE, IEEE.

[Merriam-Webster, 2013] Merriam-Webster (2013). Merriam-webster. http://www.merriam-

webster.com/dictionary/lesson.

[Merten et al., 2011] Merten, T., Juppner, D., and Delater, A. (2011). Improved representation

of traceability links in requirements engineering knowledge using sunburst and netmap vi-

sualizations. In Proceedings of the 4th International Workshop on Managing Requirements

Knowledge, pages 17–21, Trento, Italy. IEEE.

[Merten et al., 2012] Merten, T., Schafer, T., and Bursner, S. (2012). Using re knowledge

to assist automatically during requirement specification. In Proceedings of the 7th Interna-

tional Workshop on Requirements Engineering Education and Training (REET 2012), pages

9–13, Chicago, Illinois. IEEE, IEEE.

[Milne and Maiden, 2012] Milne, A. and Maiden, N. (2012). Power and politics in require-

ments engineering: Embracing the dark side? Requirements Engineering, 17(2):83–98.

www.manaraa.com

BIBLIOGRAPHY 398

[Morales-Ramirez et al., 2012] Morales-Ramirez, I., Vergne, M., Morandini, M., and

Sabatucci, L. (2012). Revealing the obvious? a retrospective artefact analysis for an ambient

assisted-living project. In Proceedings of the 2nd IEEE International Workshop on Empiri-

cal Requirements Engineering (EmpiRE), pages 41–48, Chicago, Illinois. IEEE, IEEE.

[Morandini et al., 2011] Morandini, M., Marchetto, A., and Perini, A. (2011). Requirements

comprehension: A controlled experiment on conceptual modeling methods. In Proceedings

of the 1st International Workshop on Empirical Requirements Engineering (EmpiRE), pages

53–60, Trento, Italy. IEEE.

[Niknafs and Berry, 2012] Niknafs, A. and Berry, D. M. (2012). The impact of domain knowl-

edge on the effectiveness of requirements idea generation during requirements elicitation. In

Proceedings of the 20th IEEE International Requirements Engineering Conference, pages

181–190, Chicago, Illinois. IEEE, IEEE.

[Niu and Mahmoud, 2012] Niu, N. and Mahmoud, A. (2012). Enhancing candidate link gen-

eration for requirements tracing: The cluster hypothesis revisited. In Proceedings of the 20th

IEEE International Requirements Engineering Conference, pages 81–90, Chicago, Illinois.

IEEE, IEEE.

[Nolan et al., 2011] Nolan, A. J., Abrahao, S., Clements, P., and Pickard, A. (2011). Managing

requirements uncertainty in engine control systems development. In Proceedings of the 19th

International Requirements Engineering Conference, pages 259–264, Trento, Italy. IEEE,

IEEE.

[Noorwali and Madhavji, 2012] Noorwali, I. and Madhavji, N. H. (2012). A survey of lessons

learnt in requirements engineering. Technical Report 750, University of Western Ontario,

London, Ontario.

[Noorwali and Madhavji, 2013a] Noorwali, I. and Madhavji, N. H. (2013a). Lessons learnt

in requirements engineering: A research preview. In Doerr, J. and Opdahl, A., editors,

www.manaraa.com

BIBLIOGRAPHY 399

Proceedings of the 19th International Working Conference on Requirements Engi- neering:

Foundation for Software Quality (REFSQ 13), LNCS 7830, pages 119–124, Essen, Ger-

many. Springer-Verlag Berlin Heidelberg.

[Noorwali and Madhavji, 2013b] Noorwali, I. and Madhavji, N. H. (2013b). Lessons learnt

in requirements engineering: A survey. http://edu.surveygizmo.com/s3/1131891/A-Survey-

of-Lessons-Learnt-in-Requirements-Engineering.

[Ohashi et al., 2011] Ohashi, K., Kurihara, H., Tananaka, Y., and Yamamoto, R. (2011). A

means of establishing traceability based on a uml model in business application develop-

ment. In Proceedings of the 19th International Requirements Engineering Conference,

pages 279–284, Trento, Italy. IEEE, IEEE.

[Olson and Lyles, 2011] Olson, B. J. and Lyles, A. (2011). Biofuels licensing: Lessons learned

from the monoclonal antibody business cycle. The Licensing Journal, 31(9):1–6.

[Oxford, 2004] Oxford (2004). The Oxford ESL Dictionary. Oxford University Press, New

York.

[Oxford, 2013a] Oxford (2013a). Oxford advanced learner’s dictionary.

http://oald8.oxfordlearnersdictionaries.com/dictionary/lesson.

[Oxford, 2013b] Oxford (2013b). Oxford dictionaries.

http://oxforddictionaries.com/definition/english/lesson.

[Oxford, 2013c] Oxford (2013c). Oxford dictionaries.

http://oxforddictionaries.com/definition/english/map?q=map.

[Pasquale and Spoletini, 2011] Pasquale, L. and Spoletini, P. (2011). Monitoring fuzzy tem-

poral requirements for service compositions: Motivations, challenges and experimental re-

sults*. In Proceedings of the 1st Workshop on Requirements for Systems, Services, and

Systems of Systems, pages 63–69, Trento, Italy. IEEE.

www.manaraa.com

BIBLIOGRAPHY 400

[Patton, 2001] Patton, M. Q. (2001). Evaluation, knowledge management, best practices, and

high quality lessons learned. American Journal of Evaluation, 22(3):329–336.

[Pearsall and Trumble, 1995] Pearsall, J. and Trumble, B. (1995). The Oxford Encyclopedic

English Dictionary. Oxford University Press, New York, second edition.

[Penzenstadler and Eckhardt, 2012] Penzenstadler, B. and Eckhardt, J. (2012). A requirements

engineering content model for cyber-physical systems. In Proceedings of the 2nd Interna-

tional Workshop on Requirements Engineering for Systems and Systems and Quality Re-

quirements (RESS), pages 20–29, Chicago, Illinois. IEEE, IEEE.

[Petrov et al., 2012] Petrov, P., Buy, U., and Nord, R. L. (2012). Enhancing the software ar-

chitecture analysis and design process with inferred macro-architectural requirements. In

Proceedings of the 1st International Workshop on the Twin Peaks of Requirements and Ar-

chitecture (TwinPeaks), pages 20–26, Chicago, Illinois. IEEE, IEEE.

[Pires et al., 2011] Pires, P. F., Delicato, F. C., Cobe, R., Batista, T., Davis, J. G., and Song,

J. H. (2011). Integrating ontologies, model mriven, and cnl in a multi-viewed approach for

requirements engineering. Requirements Engineering, 16(2):133–160.

[Pitula and Radhakrishna, 2011] Pitula, K. and Radhakrishna, T. (2011). On eliciting require-

ments from end-users in the ict4d domain. Requirements Engineering, 16(4):323–351.

[Poort et al., 2012] Poort, E. R., Martens, N., Weerd, I. v. d., and Vliet, H. v. (2012). How

architects see non-functional requirements: Beware of modifiability. In Proceedings of

the 18th International Working Conference on Requirements Engineering: Foundation for

Software Quality, LNCS, pages 37–51, Essen, Germany. Springer-Verlag.

[Post et al., 2012] Post, A., Menzel, I., Hoenicke, J., and Podelski, A. (2012). Automotive

behavioral requirements expressed in a specification pattern system: A case study at bosch.

Requirements Engineering, 17(1):19–33.

www.manaraa.com

BIBLIOGRAPHY 401

[Post et al., 2011] Post, A., Menzel, I., and Podelski, A. (2011). Applying restricted english

grammar on automotive requirements—does it work? a case study. In Proceedings of the

17th International Working Conference on Requirements Engineering: Foundation for Soft-

ware Quality, LNCS, pages 166–180, Essen, Germany. Springer-Verlag.

[Raspotnig and Opdahl, 2012] Raspotnig, C. and Opdahl, A. (2012). Supporting failure mode

and effect analysis: A case study with failure sequence diagrams. In Regnell, B. and Damian,

D., editors, Proceedings of the 18th International Working Conference on Requirements

Engineering: Foundation for Software Quality, LNCS, pages 117–131, Essen, Germany.

Springer-Verlag.

[Rauf et al., 2011] Rauf, R., Antkiewicz, M., and Czarnecki, K. (2011). Logical structure

extraction from software requirements documents. In Proceedings of the 19th International

Requirements Engineering Conference, pages 101–110, Trento, Italy. IEEE, IEEE.

[Reggio et al., 2011] Reggio, G., Leotta, M., and Ricca, F. (2011). “precise is better than

light” a document analysis study about quality of business process models. In Proceedings

of the 1st International Workshop on Empirical Requirements Engineering (EmpiRE), pages

61–68, Trento, Italy. IEEE.

[Reifer et al., 2004] Reifer, D. J., Basili, V. R., Boehm, B. W., and Clark, B. (2004). Cots-

based systems - twelve lessons learned about maintenance. LNCS COTS-Based Software

Systems, 2959:137–145.

[Rogers et al., 2001] Rogers, D. A., Elstein, A. S., and Borgade, G. (2001). Improving con-

tinuing medical education for surgical techniques: Applying the lessons learned in the first

decade of minimal access surgery. Annals of Surgery, 233(2):159–166.

[Runeson and Host, 2009] Runeson, P. and Host, M. (2009). Guidelines for conducting and

reporting case study research in software engineering. Empirical Software Engineering,

14(2):131–164.

www.manaraa.com

BIBLIOGRAPHY 402

[Sakhnini et al., 2012] Sakhnini, V., Mich, L., and Berry, D. M. (2012). The effectiveness of

an optimized epmcreate as a creativity enhancement technique for web site requirements

elicitation. Requirements Engineering, 17(3):171–186.

[Salfischberger et al., 2011] Salfischberger, T., van de Weerd, I., and Brinkkemper, S. (2011).

The functional architecture framework for organizing high volume requirements manage-

ment. In Proceedings of the 5th International Workshop on Software Product Management

(IWSPM), pages 17–26, Trento, Italy. IEEE.

[Salkind, 2007] Salkind, N. J. (2007). Encyclopedia of Measurement and Statistics. Sage

Publications.

[Sampath et al., 2011] Sampath, P., Arora, S., and S, R. (2011). Evolving specifications for-

mally. In Proceedings of the 19th International Requirements Engineering Conference,

pages 5–14, Trento, Italy. IEEE, IEEE.

[Sapkota et al., 2012] Sapkota, K., Aldea, A., Muhammad, Y., Duce, D. A., and Banares-

Alcantara, R. (2012). Extracting meaningful entities from regulatory text: Towards au-

tomating regulatory compliance. In Proceedings of the 5th International Workshop on Re-

quirements Engineering and Law (RELAW), pages 29–32, Chicago, Illinois. IEEE, IEEE.

[Sary and Mackey, 1995] Sary, C. and Mackey, W. (1995). A case-based reasoning approach

for the access and reuse of lessons learned. In Proceedings of the 5th Annual Symposium of

the National Council on Systems Engineering, pages 249–256, St.Louis.

[Savio and P.C., 2012] Savio, D. and P.C., A. (2012). ‘pictionades’: Enhancing stakeholders’

awareness about issues in requirements communication. In Daneva, M., Doerr, J., Her-

rmann, A., and Schneider, K., editors, Proceedings of the 2nd Workshop on Creativity in

Requirements Engineering, LNCS, pages 105–113, Essen, Germany. Springer-Verlag.

[Savio and Suryanarayana, 2012] Savio, D. and Suryanarayana, G. (2012). How to avoid tak-

ing three lefts when you can go right: Making the architectural perspective count. In Pro-

www.manaraa.com

BIBLIOGRAPHY 403

ceedings of the 1st International Workshop on the Twin Peaks of Requirements and Archi-

tecture (TwinPeaks), pages 31–35, Chicago, Illinois. IEEE, IEEE.

[Schmidt et al., 2012] Schmidt, J. Y., Anton, A. I., and Earp, J. B. (2012). Assessing identifi-

cation of compliance requirements from privacy policies. In Proceedings of the 5th Interna-

tional Workshop on Requirements Engineering and Law (RELAW), pages 52–61, Chicago,

Illinois. IEEE, IEEE.

[Schmidt et al., 2011] Schmidt, J. Y., Anton, A. I., Williams, L., and Ott, D. (2011). The role of

data use agreements in specifying legally compliant software requirements. In Proceedings

of the 4th International Workshop on Requirements Engineering and Law (RELAW), pages

1–4, Trento, Italy. IEEE.

[Schneider, 2011] Schneider, K. (2011). Focusing spontaneous feedback to support system

evolution. In Proceedings of the 19th International Requirements Engineering Conference,

pages 165–174, Trento, Italy. IEEE, IEEE.

[Schneider et al., 2012] Schneider, K., Knauss, E., Houmb, S., Islam, S., and Jurjens, J.

(2012). Enhancing security requirements engineering by organizational learning. Require-

ments Engineering, 17(1):35–56.

[Secchi et al., 1999] Secchi, P., Ciaschi, R., and Spence, D. (1999). A concept for an esa

lessons learned system. In Proceedings of Alerts and LL: An Effective Way to Prevent Fail-

ures and Problems, number Technical Report WPP-167, pages 57–61, ESTEC: Noordwijk,

The Netherlands.

[Shaker et al., 2012] Shaker, P., Atlee, J. M., and Wang, S. (2012). A feature-oriented require-

ments modelling language. In Proceedings of the 20th IEEE International Requirements

Engineering Conference, pages 151–160, Chicago, Illinois. IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 404

[Sharma and Biswas, 2011] Sharma, R. and Biswas, K. (2011). Using courteous logic based

representations for requirements specification. In Proceedings of the 4th International Work-

shop on Managing Requirements Knowledge, pages 12–16, Trento, Italy. IEEE.

[Sharma and Biswas, 2012] Sharma, R. and Biswas, K. (2012). Using norm analysis patterns

for automated requirements validation. In Proceedings of the 2nd International Workshop

on Requirements Patterns (RePa), pages 23–28, Chicago, Illinois. IEEE, IEEE.

[Sim and Alspaugh, 2011] Sim, S. E. and Alspaugh, T. A. (2011). Getting the whole story:

An experience report on analyzing data elicited using the war stories procedure. Empirical

Software Engineering, 16(4):460–486.

[Smialek et al., 2012] Smialek, M., Nowakowski, W., Jarzebowski, N., and Ambroziewicz,

A. (2012). From use cases and their relationships to code. In Proceedings of the 2nd

International Workshop on Model-Driven Requirements Engineering (MoDRE), pages 9–

18, Chicago, Illinois. IEEE, IEEE.

[Sommerville, 2011] Sommerville, I. (2011). Software Engineering. Pearson, Boston, MA,

9th edition edition.

[Sommerville and Sawyer, 1997] Sommerville, I. and Sawyer, P. (1997). Requirement Engi-

neering: A Good Practice Guide. Wiley, 1 edition.

[Summers, 1987] Summers, D. (1987). Longman Dictionary of Contemporary English. Long-

man, Essex, London, new edition edition.

[Sunindyo et al., 2011] Sunindyo, W., Melik-Merkumians, M., Moser, T., and Biffl, S. (2011).

Enforcing safety requirements for industrial automation systems at runtime: Position paper.

In Proceedings of the 2nd Workshop requirements@run.time, pages 37–42, Trento, Italy.

IEEE.

www.manaraa.com

BIBLIOGRAPHY 405

[Sutcliffe et al., 2011] Sutcliffe, A., Thew, S., and Jarvis, P. (2011). Experience with user-

centred requirements engineering. Requirements Engineering, 16(4):267–280.

[Svensson et al., 2011] Svensson, R. B., Parker, P. L., and Regnell, B. (2011). A prototype

tool for quper to support release planning of quality requirements. In Proceedings of the 5th

International Workshop on Software Product Management (IWSPM), pages 57–66, Trento,

Italy. IEEE.

[Svensson et al., 2012] Svensson, R. B., Sprockel, Y., Regnell, B., and Brinkkemper, S.

(2012). Setting quality targets for coming releases with quper: An industrial case study.

Requirements Engineering, 17(4):283–298.

[Tawhid et al., 2012] Tawhid, R., Braun, E., Cartwright, N., Alhaj, M., Mussbacher, G., Sham-

saei, A., Amyot, D., Behnam, S. A., and Richards, G. (2012). Towards outcome-based

regulatory compliance in aviation security. In Proceedings of the 20th IEEE International

Requirements Engineering Conference, pages 267–272, Chicago, Illinois. IEEE, IEEE.

[Teka et al., 2012] Teka, A., Condori-Fernandez, N., Kurtev, I., Quartel, D., and Engelsman,

W. (2012). Change impact analysis of indirect goal relations: Comparison of nfr and tro-

pos approaches based on industrial case study. In Proceedings of the 2nd International

Workshop on Model-Driven Requirements Engineering (MoDRE), pages 58–67, Chicago,

Illinois. IEEE, IEEE.

[Teruel et al., 2011] Teruel, M. A., Navarro, E., Lopez-Jaquero, V., Montero, F., and Gonzales,

P. (2011). Assesing the understandability of collaborative systems requirements notations:

an empirical study. In Proceedings of the 1st International Workshop on Empirical Require-

ments Engineering (EmpiRE), pages 85–92, Trento, Italy. IEEE.

[Thomas and Harden, 2008] Thomas, J. and Harden, A. (2008). Methods for the thematic syn-

thesis of qualitative research in systematic reviews. BMC Medical Research Methodology,

8(45):45.

www.manaraa.com

BIBLIOGRAPHY 406

[Torres et al., 2012] Torres, R., Bencomo, N., and Astudillo, H. (2012). Mitigating the obso-

lescence of quality specifications models in service-based systems. In Proceedings of the

2nd International Workshop on Model-Driven Requirements Engineering (MoDRE), pages

68–76, Chicago, Illinois. IEEE, IEEE.

[Uusitalo et al., 2011] Uusitalo, E., Raatikainen, M., Mannisto, T., and Tommila, T. (2011).

Structured natural language requirements in nuclear energy domain: Towards improving

regulatory guidelines. In Proceedings of the 4th International Workshop on Requirements

Engineering and Law (RELAW), pages 67–73, Trento, Italy. IEEE.

[van Tuijl et al., 2011] van Tuijl, G. J., Leenen, W., Shen, Z., van de Weerd, I., and Brinkkem-

per, S. (2011). Prioritizing requirements: An experiment to test the perceived reliability, us-

ability and time consumption of bubblesort and the analytical hierarchy process. In Fricker,

S. and Seyff, N., editors, Proceedings of the 1st International Requirements Engineering

Efficiency Workshop (REEW), Essen, Germany.

[Vandeville and Shaikh, 1999] Vandeville, J. V. and Shaikh, M. A. (1999). A structured ap-

proximate reasoning-based approach for gathering lessons learned information from system

development projects. Journal of Systems Engineering, 2(4):242–247.

[Veerappa and Letier, 2011] Veerappa, V. and Letier, E. (2011). Clustering stakeholders for re-

quirements decision making. In Proceedings of the 17th International Working Conference

on Requirements Engineering: Foundation for Software Quality, LNCS, pages 202–208,

Essen, Germany. Springer-Verlag.

[Vogl et al., 2011] Vogl, H., Lehner, K., Grunbacher, P., and Egyed, A. (2011). Reconciling

requirements and architectures with the cbsp approach in an iphone app project. In Pro-

ceedings of the 19th International Requirements Engineering Conference, pages 273–278,

Trento, Italy. IEEE, IEEE.

www.manaraa.com

BIBLIOGRAPHY 407

[Waldmann, 2011] Waldmann, B. (2011). There’s never enough time: Doing requirements

under resource constraints, and what requirements engineering can learn from agile devel-

opment. In Proceedings of the 19th International Requirements Engineering Conference,

pages 301–305, Trento, Italy. IEEE, IEEE.

[Wang et al., 2012] Wang, J., Li, J., Wang, Q., Zhang, H., and Wang, H. (2012). A simulation

approach for impact analysis of requirement volatility considering dependency change. In

Regnell, B. and Damian, D., editors, Proceedings of the 18th International Working Confer-

ence on Requirements Engineering: Foundation for Software Quality, LNCS, pages 59–76,

Essen, Germany. Springer-Verlag.

[Wangenheim et al., 1998] Wangenheim, C. G. v., Ramos, A. M., Althoff, K.-D., Barcia,

R. M., Weber, R., and Martins, A. (1998). Case-based reasoning approach to reuse of expe-

riential knowledge in software measurement programs. In Gierl, L., editor, Proceedings of

the 6th German Workshop on Case-Based Reasoning, Berlin, Germany.

[Weber and Aha, 2002] Weber, R. and Aha, D. (2002). Intelligent delivery of military lessons

learnt. Decision Support Systems, 34(3):287–304.

[Weber et al., 2001] Weber, R., Aha, D., and Becerra-Fernandez, I. (2001). Intelligent lessons

learned systems. Expert Systems with Applications, 17:17–34.

[Webster, 1913] Webster (1913). Webster dictionary. http://machaut.uchicago.edu/cgi-

bin/WEBSTER.sh?WORD=lesson.

[Webster, 2013] Webster (2013). Webster’s new world college dictionary.

http://www.yourdictionary.com/lesson.

[Wellman, 2007] Wellman, J. (2007). Lessons learned about lessons learned. Organization

Development Journal, 25(3):65–72.

www.manaraa.com

BIBLIOGRAPHY 408

[Wever and Maiden, 2011] Wever, A. and Maiden, N. (2011). What are the day-to-day factors

that are preventing business analysts from effective business analysis? In Proceedings of

the 19th International Requirements Engineering Conference, pages 293–298, Trento, Italy.

IEEE, IEEE.

[Withall, 2007] Withall, S. (2007). Software Requirements Patterns (Best Practices). Mi-

crosoft Press.

[Wnuk et al., 2012] Wnuk, K., Host, M., and Regnell, B. (2012). Replication of an exper-

iment on linguistic tool support for consolidation of requirements from multiple sources.

Empirical Software Engineering, 17(3):305–344.

[Wu et al., 2012] Wu, Y., Zowghi, D., Peng, X., and Zhao, W. (2012). Towards understanding

requirement evolution in a software product line: An industrial case study. In Proceed-

ings of the 1st International Workshop on the Twin Peaks of Requirements and Architecture

(TwinPeaks), pages 7–14, Chicago, Illinois. IEEE, IEEE.

[Yang et al., 2012] Yang, H., De Roeck, A., Gervasi, V., Willis, A., and Nuseibeh, B. (2012).

Speculative requirements: Automatic detection of uncertainty in natural language require-

ments. In Proceedings of the 20th IEEE International Requirements Engineering Confer-

ence, pages 11–20, Chicago, Illinois. IEEE, IEEE.

[Yi et al., 2012] Yi, L., Zhang, W., Zhao, H., Jin, Z., and Mei, H. (2012). Mining binary con-

straints in the construction of feature models. In Proceedings of the 20th IEEE International

Requirements Engineering Conference, pages 141–150, Chicago, Illinois. IEEE, IEEE.

[Yin, 2003] Yin, R. K. (2003). Case Study Research: Design and Methods. Sage Publications,

3rd edition.

[Yue et al., 2011] Yue, T., Briand, L. C., and Labiche, Y. (2011). A systematic review of

transformation approaches between user requirements and analysis models. Requirements

Engineering, 16(2):75–99.

www.manaraa.com

BIBLIOGRAPHY 409

[Zhu and Herrmann, 2012] Zhu, L. and Herrmann, T. (2012). Design now! – elaborating

requirements in situated action. In Daneva, M., Doerr, J., Herrmann, A., and Schneider,

K., editors, Proceedings of the 2nd Workshop on Creativity in Requirements Engineering,

LNCS, pages 93–104, Essen, Germany. Springer-Verlag.

www.manaraa.com

Curriculum Vitae

Name: Ibtehal Noorwali

Post-Secondary Umm Al-Qura University
Education and Makkah, Saudi Arabia
Degrees: 2005-2009

B.Sc., Computer Science

University of Western Ontario
London, Ontario, Canada
2011-2013
M.Sc., Computer Science

Honours and Saudi Arabia’s Ministry of Higher Education Scholarship for Graduate Studies
Awards: 2011

Related Work Teaching Assistant
Experience: Umm Al-Qura University

2009-2011

Publications:

Noorwali, I.N., Madhavji, N.H., Maps of Lessons Learnt in Requirements Engineering: A

Research Preview, accepted in 19th International Working Conference on Requirements Engi-

neering: Foundation for Software Quality (REFSQ 13) in January, 2013.

410

	Western University
	Scholarship@Western
	July 2013

	Maps of Lessons Learnt in Requirements Engineering
	Ibtehal Noorwali
	Recommended Citation

	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	List of Appendices
	Glossary: List of Terms
	Introduction
	Motivation
	Purpose of the Study
	Significance and Originality of Research
	Thesis Structure

	Related Work
	Lessons Learnt in Non-Software Engineering Fields
	Lessons Learnt in Software Engineering
	Lessons Learnt in Requirements Engineering
	Analysis and Research Gap

	The Concept of a Lesson and Lesson Map
	Lesson Concept
	Lesson Definition
	Literature Definitions
	Dictionary Definitions

	Lesson Representation
	Generic Attributes
	Extended Attributes

	Lesson Map Concept
	Map Definition
	The Concept of a Lesson Map

	The Concept of Lessons and Lesson Maps in RE
	RE Lesson
	RE Lesson Map
	Validation Processes of the RE Lesson and Lesson Map

	The Empirical Study on RE Lessons
	Research Goal and Questions
	Research Methods
	Systematic Literature Review
	Research Questions
	Review Protocol
	Review Protocol Validation

	Survey
	Instrument Design
	Data Collection
	Data Analysis
	Participants

	Threats to Validity
	Systematic Literature Review
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Survey
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Results of the Empirical Study: Elicited Lessons
	RE Lessons from Literature
	Lessons from Year 2011
	Lessons from Year 2012

	RE Lessons from Practice
	Summary and Discussion

	Populated RE Lesson Maps
	Map 1: RE Phase
	Map 2: RE Phase X Expression
	Map 3: Type X Source
	Map 4: Target Object X RE Phase
	Map 5: Type X Expression X RE Phase

	Implications
	Implications on Research
	Implications on Practice

	Limitations, Future Work and Conclusions
	Limitations and Future Work
	Conclusions

	Appendix A: A Survey of Lessons Learnt
	Appendix B: Lessons Learnt in Requirements Engineering: A Survey
	Appendix C: Results of the Empirical Study: Elicited Lessons
	Appendix D: Lesson Object and Tool Support
	Appendix E: Published REFSQ Paper
	Bibliography
	Curriculum Vitae

